شبیه سازی و بررسی پارامتری سیستم تولید سه گانه توان، گرما و تبرید با استفاده از سلول‌های خورشیدی متمرکز و خنک کننده ترموالکتریک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی مکانیک، دانشگاه ارومیه، ارومیه، ایران

2 استاد، گروه مهندسی مکانیک، دانشگاه ارومیه، ارومیه، ایران

3 دانشیار، گروه مهندسی مکانیک، دانشگاه ارومیه، ارومیه، ایران

چکیده

در بررسی پیش رو یک سیستم نوین تولید سه گانه گرمایش، توان الکتریکی و سرمایش بر پایه تابش خورشیدی و با استفاده از سلول‌های خورشیدی متمرکز و خنک کننده‌های ترموالکتریک پیشنهاد شده است. شبیه سازی سیستم به صورت تحلیلی انجام گرفته و مدل صفر بعدی برای خنک کننده ترموالکتریک و همچنین مدل شبکه مقاومت گرمایی برای شبیه سازی دقیق تر بخش خنک کاری سلول خورشیدی متمرکز استفاده شده است. نتایج بررسی نشان دهنده آن است که سیستم پیشنهادی توانایی تولید توانی در حدود 270 کیلووات و آب گرم و سرد مصرفی با دماهای 50 و 10 درجه سلسیوس را در دبی‌های 10 و 2 کیلوگرم بر ثانیه با استفاده از 2 مترمربع سلول خورشیدی متمرکز با ضریب تمرکز 1000 که به صورت اجزای 1×1 سانتی متری مورد استفاده قرار می‌گیرند، دارا می‌باشد. بررسی پارامتری صورت گرفته بر روی سیستم برای ساعات مختلف روز نشان دهنده آن است که تابش خورشیدی اثری حداقلی بر روی دمای آب سرد خروجی داشته ولی توان تولیدی را به شدت متاثر می‌کند.

کلیدواژه‌ها

موضوعات


[1]           Gholizadeh T., M. Vajdi and Rostamzadeh H., A new trigeneration system for power, cooling, and freshwater production driven by a flash-binary geothermal heat source. Renewable Energy,. 148: p. 31-43. 2020

[2]           Li Z., et al., Comprehensive evaluation of low-grade solar trigeneration system by photovoltaic-thermal collectors. Energy Conversion and Management,. 215: p. 112895. 2020

[3]           Rostami S., Rostamzadeh H. and Fatehi R., A new wind turbine driven trigeneration system applicable for humid and windy areas, working with various nanofluids. Journal of Cleaner Production,. 296: p. 126579. 2021

[4]           Bellos E. and Tzivanidis C., Parametric analysis of a solar-driven trigeneration system with an organic Rankine cycle and a vapor compression cycle. Energy and Built Environment,. 2(3): p. 278-289. 2021

[5]           Chen H., Li Z. and Xu Y., Assessment and parametric analysis of solar trigeneration system integrating photovoltaic thermal collectors with thermal energy storage under time-of-use electricity pricing. Solar Energy,. 206: p. 875-899. 2020

[6]           Sebastián, A., et al., Modular micro-trigeneration system for a novel rotatory solar Fresnel collector: A design space analysis. Energy Conversion and Management,. 227: p. 113599. 2021

[7]           Dabwan, Y.N. and G. Pei, A novel integrated solar gas turbine trigeneration system for production of power, heat and cooling: Thermodynamic-economic-environmental analysis. Renewable Energy,. 152: p. 925-941. 2020

[8]           Adhami H., Designing and analysis of the micro-trigeneration systems based on combined proton exchange membrane fuel cell with photovoltaic and photovoltaic/thermal prime movers in portable applications. Applied Thermal Engineering,. 180: p. 115779. 2020

[9]           Chen H., Li Z. and Xu Y., Evaluation and comparison of solar trigeneration systems based on photovoltaic thermal collectors for subtropical climates. Energy Conversion and Management,. 199: p. 111959. 2019

[10]         Maka, A.O.M. and T.S. O'Donovan, Transient thermal-electrical performance modelling of solar concentrating photovoltaic (CPV) receiver. Solar Energy,. 211: p. 897-907. 2020

[11]         AZURSPACE. CPV Solar Cells. 2021; Available from: http://www.azurspace.com/index.php/en/products/products-cpv/cpv-solar-cells.

[12]         Ben Youssef, W., et al., Assessment viability of a concentrating photovoltaic/thermal-energy cogeneration system (CPV/T) with storage for a textile industry application. Solar Energy,. 159: p. 841-851. 2018

[13]         Khan, S.A., Y. Bicer, and M. Koç, Design and analysis of a multigeneration system with concentrating photovoltaic thermal (CPV/T) and hydrogen storage. International Journal of Hydrogen Energy,. 45(5): p. 3484-3498. 2020

[14]         Ji Y., et al., A transmissive concentrator photovoltaic module with cells directly cooled by silicone oil for solar cogeneration systems. Applied Energy,. 288: p. 116622. 2021

[15]         Codd D.S., et al., Solar Cogeneration of Electricity with High-Temperature Process Heat. Cell Reports Physical Science,. 1(8): p. 100135. 2020

[16]         Dimri, N., A. Tiwari, and G.N. Tiwari, Effect of thermoelectric cooler (TEC) integrated at the base of opaque photovoltaic (PV) module to enhance an overall electrical efficiency. Solar Energy,. 166: p. 159-170. 2018

[17]         Jaber H., et al., Domestic thermoelectric cogeneration system optimization analysis, energy consumption and CO2 emissions reduction. Applied Thermal Engineering,. 130: p. 279-295. 2018

[18]         Jamali S. and Yari M., Recovery of liquefied natural gas cold energy in a clean cogeneration system utilizing concentrated photovoltaics. Journal of Cleaner Production,. 350: p. 131517. 2022

[19]         Dimri N., A. Tiwari, and G.N. Tiwari, Thermal modelling of semitransparent photovoltaic thermal (PVT) with thermoelectric cooler (TEC) collector. Energy Conversion and Management,. 146: p. 68-77. 2017

[20]         Sarkar J., Performance optimization of transcritical CO2 refrigeration cycle with thermoelectric subcooler. International Journal of Energy Research,. 37(2): p. 121-128. 2013

[21]         Sarkar J. and Bhattacharyya S., Optimization of recompression S-CO2 power cycle with reheating. Energy Conversion and Management,. 50(8): p. 1939-1945. 2009

[22]         Shah M.M. and MM S., A new correlation for heat transfer during boiling flow through pipes. 1976.

[1]           Gholizadeh T., M. Vajdi and Rostamzadeh H., A new trigeneration system for power, cooling, and freshwater production driven by a flash-binary geothermal heat source. Renewable Energy,. 148: p. 31-43. 2020
[2]           Li Z., et al., Comprehensive evaluation of low-grade solar trigeneration system by photovoltaic-thermal collectors. Energy Conversion and Management,. 215: p. 112895. 2020
[3]           Rostami S., Rostamzadeh H. and Fatehi R., A new wind turbine driven trigeneration system applicable for humid and windy areas, working with various nanofluids. Journal of Cleaner Production,. 296: p. 126579. 2021
[4]           Bellos E. and Tzivanidis C., Parametric analysis of a solar-driven trigeneration system with an organic Rankine cycle and a vapor compression cycle. Energy and Built Environment,. 2(3): p. 278-289. 2021
[5]           Chen H., Li Z. and Xu Y., Assessment and parametric analysis of solar trigeneration system integrating photovoltaic thermal collectors with thermal energy storage under time-of-use electricity pricing. Solar Energy,. 206: p. 875-899. 2020
[6]           Sebastián, A., et al., Modular micro-trigeneration system for a novel rotatory solar Fresnel collector: A design space analysis. Energy Conversion and Management,. 227: p. 113599. 2021
[7]           Dabwan, Y.N. and G. Pei, A novel integrated solar gas turbine trigeneration system for production of power, heat and cooling: Thermodynamic-economic-environmental analysis. Renewable Energy,. 152: p. 925-941. 2020
[8]           Adhami H., Designing and analysis of the micro-trigeneration systems based on combined proton exchange membrane fuel cell with photovoltaic and photovoltaic/thermal prime movers in portable applications. Applied Thermal Engineering,. 180: p. 115779. 2020
[9]           Chen H., Li Z. and Xu Y., Evaluation and comparison of solar trigeneration systems based on photovoltaic thermal collectors for subtropical climates. Energy Conversion and Management,. 199: p. 111959. 2019
[10]         Maka, A.O.M. and T.S. O'Donovan, Transient thermal-electrical performance modelling of solar concentrating photovoltaic (CPV) receiver. Solar Energy,. 211: p. 897-907. 2020
[11]         AZURSPACE. CPV Solar Cells. 2021; Available from: http://www.azurspace.com/index.php/en/products/products-cpv/cpv-solar-cells.
[12]         Ben Youssef, W., et al., Assessment viability of a concentrating photovoltaic/thermal-energy cogeneration system (CPV/T) with storage for a textile industry application. Solar Energy,. 159: p. 841-851. 2018
[13]         Khan, S.A., Y. Bicer, and M. Koç, Design and analysis of a multigeneration system with concentrating photovoltaic thermal (CPV/T) and hydrogen storage. International Journal of Hydrogen Energy,. 45(5): p. 3484-3498. 2020
[14]         Ji Y., et al., A transmissive concentrator photovoltaic module with cells directly cooled by silicone oil for solar cogeneration systems. Applied Energy,. 288: p. 116622. 2021
[15]         Codd D.S., et al., Solar Cogeneration of Electricity with High-Temperature Process Heat. Cell Reports Physical Science,. 1(8): p. 100135. 2020
[16]         Dimri, N., A. Tiwari, and G.N. Tiwari, Effect of thermoelectric cooler (TEC) integrated at the base of opaque photovoltaic (PV) module to enhance an overall electrical efficiency. Solar Energy,. 166: p. 159-170. 2018
[17]         Jaber H., et al., Domestic thermoelectric cogeneration system optimization analysis, energy consumption and CO2 emissions reduction. Applied Thermal Engineering,. 130: p. 279-295. 2018
[18]         Jamali S. and Yari M., Recovery of liquefied natural gas cold energy in a clean cogeneration system utilizing concentrated photovoltaics. Journal of Cleaner Production,. 350: p. 131517. 2022
[19]         Dimri N., A. Tiwari, and G.N. Tiwari, Thermal modelling of semitransparent photovoltaic thermal (PVT) with thermoelectric cooler (TEC) collector. Energy Conversion and Management,. 146: p. 68-77. 2017
[20]         Sarkar J., Performance optimization of transcritical CO2 refrigeration cycle with thermoelectric subcooler. International Journal of Energy Research,. 37(2): p. 121-128. 2013
[21]         Sarkar J. and Bhattacharyya S., Optimization of recompression S-CO2 power cycle with reheating. Energy Conversion and Management,. 50(8): p. 1939-1945. 2009
[22]         Shah M.M. and MM S., A new correlation for heat transfer during boiling flow through pipes. 1976.