ارائه روش جدید ساده‌سازی دینامیک چند درجه‌آزادی ربات لامسه‌ای و مطالعه دقت محدوده پایداری حاصله

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه مهندسی مکانیک، دانشگاه صنعتی سیرجان، کرمان، ایران

2 دانشیار، گروه مهندسی مکانیک، دانشگاه صنعتی اصفهان، اصفهان، ایران

3 استادیار، گروه مهندسی مکانیک، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

4 استادیار، دانشکده مهندسی مکانیک و هوافضا، دانشگاه صنعتی شیراز، شیراز، ایران

چکیده

ربات لامسه‌ای واسط بین دنیای حقیقی و مجازی است و پایداری آن حین شبیه‌سازی جسم مجازی امری حساس برای ایمنی کاربر است. عموما ربات‌های لامسه‌ای دارای چندین درجه‌آزادی و دینامیک پیچیده‌ هستند. این پیچیدگی دینامیکی ناشی از عواملی همچون مکانیزم پیچیده، اصطکاک کولمب و لزجت می‌باشد، که بررسی پایداری آن‌ها را در شرایط کلی دشوار می‌کند. این ربات‌ها فضای کاری بزرگی را می‌توانند پوشش دهند اما مسئله پایداری تعامل با جسم مجازی در حین شبیه‌سازی جسم مجازی مطرح می­شود که دامنه حرکت کارگیر ربات محدود است. لذا ربات لامسه‌ای در تحلیل‌های پایداری به صورت یک سیستم یک درجه‌آزادی خطی در نظر گرفته شود. با این وجود تاکنون روشی سیستماتیک به منظور ساده­سازی دینامیک ربات لامسه­ای ارائه نشده و دقت محدوده کاری حاصله ربات نیز ارزیابی نگردیده است. در این مقاله روشی به منظور ساده­سازی دینامیک ربات لامسه­ای ارائه شده و برای صحه‌گذاری طی شبیه‌سازی‌هایی در نرم افزار MATLAB، پایداری ربات KUKA LWR IV به عنوان یک ربات لامسه‌ای شش درجه‌آزادی در شرایط مختلف بررسی و دقت روش پیشنهادی مطالعه شده است. در این پژوهش دینامیک چند درجه‌آزادی و غیرخطی ربات لامسه‌ای، در یک نقطه‌کاری مشخص تبدیل به دینامیکی متشکل از یک جرم موثر، ویسکوز موثر و کولومب موثر می‌شود. این سیستم یک درجه‌آزادی بدست آمده، می‌تواند در تحلیل‌های پارامتری پایداری و نافعالی به راحتی استفاده شود، حال آنکه انجام چنین کاری بر روی سیستم اصلی بسیار سخت و به نظر غیرممکن است. بررسی‌ها نشان می‌دهند که میانگین خطای نسبی بین مرز پایداری این دو سیستم کمتر از 18% است.

کلیدواژه‌ها

موضوعات


[1] Mashayekhi A., Nahvi A., Yazdani M., Moghadam M. M., Arbabtafti M., and Norouzi M., VirSense: A novel haptic device with fixed-base motors and a gravity compensation system, Industrial Robot: An International Journal, 2014.
[2] Hadi A., and Bagherian Jafarabadi M. A., Design and prototyping of a haptic user interface based on head movements for patients with cervical spinal cord injury, Modares Mechanical Engineering, vol. 17, pp. 52-62, 2017.
[3] Singh J., Srinivasan A. R., Neumann G., and Kucukyilmaz A., Haptic-Guided Teleoperation of a 7-DoF Collaborative Robot Arm with an Identical Twin Master, IEEE transactions on haptics, vol. 13, pp. 246-252, 2020.
[4] Cheng L. and Tavakoli M., A multilateral impedance-controlled system for haptics-enabled surgical training and cooperation in beating-heart surgery, International Journal of Intelligent Robotics and Applications, vol. 3, pp. 314-325, 2019.
[5] Sharkawy A. -N., Koustoumpardis P. N., and Aspragathos N., A recurrent neural network for variable admittance control in human–robot cooperation: simultaneously and online adjustment of the virtual damping and Inertia parameters, International Journal of Intelligent Robotics and Applications, vol. 4, pp. 441-464, 2020.
[6] Peng Y. -C., Carabis D. S., and Wen J. T., Collaborative manipulation with multiple dual-arm robots under human guidance, International Journal of Intelligent Robotics and Applications, vol. 2, pp. 252-266, 2018.
[7] Xia J., Huang D., Li Y., and Qin N., Iterative learning of human partner’s desired trajectory for proactive human–robot collaboration, International Journal of Intelligent Robotics and Applications, vol. 4, pp. 229-242, 2020.
[8] Anatomy_training. (2017-12-28). Virtual reality surgery and anatomy training application. Available: http://edge.rit.edu/edge/P15083/ public/Photo
[9] Illumen. (2017-12-28). Dental training course featuring haptic technology. Available: http://illumengroup.com/portfolio-items/haptic-applied-dental-training/,
[10]Panariello D., Caporaso T., Grazioso S., Di Gironimo G., Lanzotti A., Knopp S., et al., Using the kuka lbr iiwa robot as haptic device for virtual reality training of hip replacement surgery, in 2019 Third IEEE International Conference on Robotic Computing (IRC), 2019, pp. 449-450.
[11]Mashayekhi A., Behbahani S., Ficuciello F., and Siciliano B., Analytical stability criterion in haptic rendering: The role of damping, IEEE/ASME Transactions on Mechatronics, vol. 23, pp. 596-603, 2018.
[12]Mashayekhi A., Behbahani S., Ficuciello F., and Siciliano B., A novel Lyapunov function for stability of haptic device in simulating virtual objects, Modares Mechanical Engineering, vol. 17, pp. 367-374, 2018.
[13]Gil J. J., Sánchez E., Hulin T., Preusche C., and Hirzinger G., Stability boundary for haptic rendering: Influence of damping and delay, Journal of Computing and Information Science in Engineering, vol. 9, 2009.
[14]Diolaiti N., Niemeyer G., Barbagli F., and Salisbury J. K., Stability of haptic rendering: Discretization, quantization, time delay, and coulomb effects, IEEE Transactions on Robotics, vol. 22, pp. 256-268, 2006.
[15]Abbott J. J. and Okamura A. M., Effects of position quantization and sampling rate on virtual-wall passivity, IEEE Transactions on Robotics, vol. 21, pp. 952-964, 2005.
[16]Mashayekhi A., Behbahani S., Ficuciello F., and Siciliano B., Delay-dependent stability analysis in haptic rendering, Journal of Intelligent & Robotic Systems, vol. 97, pp. 33-45, 2020.
[17]Xiong D., Liu Y., Zhu C., Jin L., and Wang L., Delay-dependent stability analysis of haptic systems via an auxiliary function-based integral inequality, in Actuators, 2021, p. 171.
[18]Zarei‐nia K., Sepehri N., and Wu Q., A Lyapunov controller for stable haptic manipulation of hydraulic actuators, International Journal of Robust and Nonlinear Control, vol. 22, pp. 241-261, 2012.
[19]Zarei-nia K. and Sepehri N., Lyapunov stable displacement-mode haptic manipulation of hydraulic actuators: theory and experiment, International journal of control, vol. 85, pp. 1313-1326, 2012.
[20]Hashemzadeh F., Sharifi M., and Tavakoli M., Nonlinear trilateral teleoperation stability analysis subjected to time-varying delays, Control Engineering Practice, vol. 56, pp. 123-135, 2016.
[21]Craig J. J,, Introduction to robotics: mechanics and control, 3/E: Pearson Education India, 2009.
[22]Mashayekhi A., Behbahani S., Ficuciello F., and Siciliano B., Influence of human operator on stability of haptic rendering: a closed-form equation, International Journal of Intelligent Robotics and Applications, vol. 4, pp. 403-415, 2020.
[23]Karami A., Sadeghian H., and Keshmiri M., Hierarchical position, orientation and impedance control in redundant robots, Modares Mechanical Engineering, vol. 17, pp. 117, 125., 2017
 [24]Gaz C., Flacco F., and De Luca A., Identifying the dynamic model used by the KUKA LWR: A reverse engineering approach, in 2014 IEEE international conference on robotics and automation (ICRA), 2014, pp. 1386-1392.
[25]Karami A., Sadeghian H., and Keshmiri M., Novel approaches to control multiple tasks in redundant manipulators: stability analysis and performance evaluation, Advanced Robotics, vol. 32, pp. 535-546, 2018.