چقرمگی شکست بین لایه‌ای کامپوزیت‌های کربن/ اپوکسی در مد اول و دوم شکست

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران، ایران

2 دانشجوی کارشناسی ارشد، مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران، ایران

3 استادیار، پژوهشکده سامانه‌های ماهواره، پژوهشگاه فضایی ایران، تهران، ایران

چکیده

کامپوزیت­های زمینه پلیمری با وجود داشتن استحکام و مدول ویژه بالا در مقایسه با مواد سنتی در راستای عمود بر صفحه خواص مکانیکی­شان ضعیف می­باشد. این نوع سازه­ها در برخی کاربردهای صنعتی به صورت مداوم در معرض چرخه گرمایی قرار می گیرند. در این پژوهش، تاثیر 200 چرخه گرمایی سرمایش-گرمایش در محدوه دمایی 30- تا 65+ درجه سلسیوس بر چقرمگی شکست کامپوزیت های کربن اپوکسی بررسی شده است. نمونه­های کامپوزیت­ی از لایه های پارچه کربن و رزین اپوکسی ساخته شده و آزمایش­های چقرمگی شکست نمونه تیر دولبه ای یک سرگیردار (DCB) و نمونه خمشی با شکاف انتهایی (ENF) انجام شده است. نمونه های ساخته شده بعد از قرارگیری در معرض 200 چرخه گرمایی سرمایش-گرمایش آزمایش شده و چقرمگی های استخراج شده با نمونه های مشابه بدون قرار گرفتن در معرض چرخه گرمایی مقایسه شده­اند. نتایج آزمایشگاهی در نمونه­های مد اول و دوم نشان دادند که چرخه گرمایی،  چقرمگی شکست شروع تورق را به ترتیب 7/5 و 5/15 درصد نسبت به نمونه­های بدون چرخه گرمایی کاهش داده است. همچنین سطح ترک با استفاده از میکروسکوپ نوری و میکروسکوپ الکترونی تصویربرداری شده و مکانیسم رشد ترک در نمونه های بدون چرخه و تحت چرخه گرمایی مورد مقایسه و تحلیل قرار گرفته است.

کلیدواژه‌ها

موضوعات


  • Grimes G.C. In composite materials: testing and design. Number 617, pages 106-119, Philadelphia, 1977. ASTM, American society for testing and materials.”
  • Benzerga D., Haddi A., Seddak A., and Lavie A., A mixed-mode damage model for delamination growth applied to a new woven composite, Comput. Mater. Sci., Vol. 41, No. 4, pp. 515–521, 2008.
  • Hosseini M. R., Taheri-Behrooz F., and Salamat-talab M., Mode II interlaminar fracture toughness of woven E-glass/epoxy composites in the presence of mat interleaves, Int. J. Adhes. Adhes., Vol. 98, p. 102523, Apr. 2020, doi: 10.1016/j.ijadhadh.2019.102523..
  • Irwin G. R. and Kies J. A., Critical energy rate analysis of fracture strength, SPIE MILESTONE Ser. MS, Vol. 137, pp. 136–141, 1997.
  • Banks-Sills L., Ishbir C., Fourman V., Rogel L., and Eliasi R., Interface fracture toughness of a multi-directional woven composite, Int. J. Fract., Vol. 182, No. 2, pp.187–207, Aug. 2013.
  • Navarro P., Aubry J., Pascal F., Marguet S., Ferrero J. F., and O. Dorival, Influence of the stacking sequence and crack velocity on fracture toughness of woven composite laminates in mode I, Eng. Fract. Mech., Vol. 131, pp. 340–348, 2014.
  • Ouyang Z. and Li G., Local Damage Evolution of Double Cantilever Beam Specimens During Crack Initiation Process: A Natural Boundary Condition Based Method, J. Appl. Mech., Vol. 76, No. 5, p. 51003, 2009.
  • Nairn J. A., Analytical and numerical modeling of R curves for cracks with bridging zones, Int. J. Fract., Vol. 155, No. 2, pp. 167–181, 2009.
  • Hosseini M. R., Taheri-Behrooz F., and Salamat-talab M., Mode I interlaminar fracture toughness of woven glass/epoxy composites with mat layers at delamination interface, Polym. Test., Vol. 78, p. 105943, Sep. 2019, doi: 10.1016/j.polymertesting.2019.105943.
  •  
  • Shokrieh M. M., Salamat-talab M., and Heidari-Rarani M., Dependency of bridging traction of DCB composite specimen on interface fiber angle, Theor. Appl. Fract., Vol. 90, pp. 22–32, 2017.
  • Suo Z., Bao G., and Fan B., Delamination R-curve phenomena due to damage, J. Phys. Solids, Vol. 40, No. 1, pp. 1–16, 1992.
  • Andersons J. and König M., Dependence of fracture toughness of composite laminates on interface ply orientations and delamination growth direction, Compos. Sci. Technol., Vol. 64, No. 13–14, pp. 2139–2152, Oct. 2004.
  • Funk J. and Deaton J., The Interlaminar Fracture Toughness of Woven Graphite/Epoxy Composites., 1989.
  • Shin S., Fractographical analysis on the mode II delamination in woven carbon fiber reinforced epoxy composites, J. Mater. Sci., Vol. 34, No. 21, pp. 5299–5306, 1999.
  • Pereira A. and de Morais A., Mode II interlaminar fracture of glass/epoxy multidirectional laminates, Compos. Part A Appl. Sci. Manuf., Vol. 35, No. 2, pp. 265–272, Feb. 2004.
  • Triki E., Zouari B., and Dammak F., Dependence of the interlaminar fracture toughness of E-Glass / Polyester woven fabric composites laminates on ply orientation, Eng. Fract. Mech., Vol. 159, pp. 63–78, 2016.
  • Im K.H., Cha C.S.., Kim S.K., Yang I.Y., Effects of temperature on impact damages in CFRP composite laminates, Compos B: Eng, Vol. 32, pp. 669–682, 2001.
  • Lo´pez-Puente J., Zaera R. and Navarro C., The effect of low temperatures on the intermediate and high velocity impact response of CFRPs, Compos B: Eng, Vol. 33, pp. 559–566, 2002
  • Go´mez-del Rio T., Zaera R., Barbero E., Navarro C., Damage in CFRPs due to low velocity impact at low temperature, Compos B: Eng., Vol. 36, pp. 41–50, 2005.
  • Go´mez-del Rio T., Zaera R., Barbero E., Navarro C., Dynamic tensile behaviour at low temperature of CFRP using a split Hopkinson pressure bar, Compos Sci Technol, Vol. 65, pp. 61–71, 2005.
  • Adams D.S., Bowles D.E., Herakovich C.T., Thermal induced transverse cracking in graphite-epoxy cross-ply laminates, Journal of reinforced plastics and composites, Vol. 5, pp. 152-169, 1986.
  • Shin K., Kim C.h., Hong C.h., Lee H., Prediction of failure thermal cycles in graphite/epoxy composite materials under simulated low earth orbit environments, Composites, Part B, Vol. 31, pp. 223-235, 2000.
  • Cuong L.N., Quang N.D., Cuong T.Q., Khanh D.N.,“Experimental Investigation and Modeling of the Thermal Cycling Effect on the Mechanical Properties of CFRP”, 7th International Conference on Mechanical and Aerospace Engineering, pp. 41-45, 2016.
  • Asp L.E., The Effects of Moisture and Temprature on the Interlaminar Delamination Toughness of a Carbon/Epoxy Composite, Composites science and Technology, Vol. 58, No.6, pp. 967-977, 1998.
  • شکریه محمود مهرداد، زین الدینی افشین، مدل سازی چقرمگی شکست تورق مود ترکیبی اول و دوم در نمونه یکسرگیردار دو لبه نامتقارن کامپوزیت های لایه ای، مجله مدل سازی در مهندسی، شماره 41، تابستان 1394
  • Rodriguez-Gonzalez J.A., Rubio-Gonzalez, C., Mixed-Mode I/II interlaminar fracture toughness of carbon fiber/epoxy composites with the addition of multiwalled carbon nanotubes by spaying technique, Journal of Composite Materials, 52, No. 22, 2018.
  • Barikani M., Saidpour H. and Sezen M. Mode I interlaminar fracture toughness in unidirectional Carbon-Fibre/epoxy composites, Iran. Polym. J., Vol. 11, No. 6, pp. 413-423 (2002).
  • Barikani M.. and Saidpour H. and Sezen M. Mode II interlaminar fracture toughness of Carbon/Epoxy Laminates, Iran. Polym. J., Vol. 12, No. 5, pp.389-400, 2003.
  • Arai M., Noro Y., Sugimoto K., Endo M., Mode I and mode II interlaminar fracture toughness of CFRP laminates toughened by carbon nanofiber interlayer, Composites Science and Technology, Vol. 68, No. 2, pp. 516-525, 2008.
  • چوبانی نقدعلی، شاملی محرم، " بررسی تجربی و عددی شکست بین لیه ای کامپوزیت بافتی شیشه-اپوکسی تحت بارگذاری مود مرکب I/II"، فصلنامه علمی-پژوهشی مکانیک هوافضا، جلد 14، 39-54، بهار 1397
  • Asp L.E., The effects of moisture and temperature on the interlaminar delamination toughness of a carbon/epoxy composite, Compos. Sci. Technol., Vol. 58, No. 6, pp. 967–977, Jun. 1998, doi: 10.1016/S0266-3538(97)00222-4.
  • Ghasemi A.R., Baghersad R. and Vaziri-Sereshk V M.R., Non-linear Behavior of Polymer Based Composite Laminates under Cyclic Thermal Shock and Its Effects on Residual Stresses, Iran. J. Polym. Sci. and Tech. Vol 24, No. 2, pp. 133-140, 2011.
  • Sales R., Gusmao S., et , The temperature effects on the fracture toughness of carbon fiber/RTM-6 laminates processed by VARTM, Journal of Composite Materials, Vol. 51, No. 12, pp. 1729–1741, 2016.
  • طاهری بهروز فتح اله، هوشنگی حسن، مبانی ساخت و تولید مواد مرکب (کامپوزیت­ها)، نشر دانشگاهی، تهران، 1397
  • ASTM D5528 - 13 Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites.
  • ASTM D7905 / D7905M - 19e1 Standard Test Method for Determination of the Mode II Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites.