اثرات تابش گرمایی بر جریان همرفت اجباری نانو سیال آب-اکسید مس در یک محفظه ذوزنقه‌ای شکل در حضور حرکت براونی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، دانشکده مهندسی مکانیک، دانشگاه صنعتی سیرجان، سیرجان، ایران

2 دانشجوی کارشناسی ارشد، دانشکده مهندسی مکانیک، دانشگاه صنعتی سیرجان، سیرجان، ایران

3 استادیار، دانشکده مهندسی شیمی، دانشگاه صنعتی سیرجان، سیرجان، ایران

چکیده

در پژوهش حاضر، اثرات تابش گرمایی بر جریان همرفت اجباری نانو سیال در یک محفظه ذوزنقه­ای شکل مورد بررسی قرار می­گیرد. این محفظه دارای دو دیوار جانبی شیبدار و دو مجرای ورودی و خروجی مستقل است. برای مدل سازی دیوارهای شیبدار این محفظه، روش بسیار دقیق و کارآمد انسداد بهبود یافته بکار گرفته می­شود. معادله انرژی در این مطالعه، شامل هر سه مکانیزم انتقال گرمای رسانشی، همرفتی و تابشی است. برای محاسبه اثرات مکانیزم انتقال گرمای تابشی در این معادله، از تقریب روزلند استفاده می­شود. نانو سیال مورد مطالعه در این تحقیق، نانو سیال آب-اکسید مس بوده که برای محاسبه خواص ترمو فیزیکی آن، اثرات حرکت براونی نیز در نظر گرفته شده است. اثرات متقابل پارامتر تابش و درصد حجمی نانو ذرات اکسید مس بر رفتارهای گرمایی جریان سیال با رسم نمودارهای دمای بی بعد در محفظه و توزیع­ عددهای ناسلت همرفتی، تابشی و کل روی دیوار پایینی آن، مورد بررسی قرار می­گیرند. از نتایج این پژوهش به­خوبی مشخص است که بیشترین مقدار آهنگ انتقال گرمای کل روی دیوار پایینی محفظه مورد مطالعه، مربوط به حالت  و  است.

کلیدواژه‌ها

موضوعات


  • Mahmoodabadi M.J., Mahmoodabadi F. and Atashafrooz M., Development of the Meshless Local Petrov-Galerkin Method to Analyze Three-Dimensional Transient Incompressible Laminar Fluid Flow, Journal of the Serbian Society for Computational Mechanics, Vol. 12, No. 2, pp. 128-152, 2018.
  • Loenko D.S., Shenoy A. and Sheremet M.A., Effect of Time-Dependent Wall Temperature on Natural Convection of a Non-Newtonian Fluid in an Enclosure, International Journal of Thermal Sciences, Vol. 166, Article Number: 106973, 2021.
  • Bhowmick S., Xu F., Molla M.M. and Saha S.C., Chaotic Phenomena of Natural Convection for Water in a V-Shaped Enclosure, International Journal of Thermal Sciences, Vol. 176, Article Number: 107526, 2022.
  • Sanga P.J., Kumar A. and Mishra S.K., Numerical Investigation of Turbulent Forced Convection Flow in a Two-Dimensional Curved Surface Cavity, Engineering Applications of Computational Fluid Mechanics, Vol. 16, No. 1, pp. 359-373, 2022.
  • خدادادی ر.، رئیسی ا. و قاسمی ب.، بررسی عددی انتقال گرمایی جابجایی طبیعی سیال غیرنیوتنی قانون توانی درون محفظه مثلث شکل حاوی یک منبع گرمایی همدما، مجلۀ مهندسی مکانیک دانشگاه تبریز، د. 52، ش. 1، ص. 119-128، 1401.
  • Roy M., Roy S. and Basak T., Finite Element Simulations on Heatline Trajectories for Mixed Convection in Porous Square Enclosures: Effects of Various Moving Walls, European Journal of Mechanics-B/Fluids, Vol. 59, pp.140-160, 2016.
  • Messaoud H., Bachir M. and Djamel S., Numerical Study of Mixed Convection and Flow Pattern in Various Across-Shape Concave Enclosures, Internal Journal of Heat and Technology, Vol. 35, pp. 567-575, 2017.
  • Turan O., Yigit S., Liang R. and Chakraborty N., Laminar Mixed Convection of Power-Law Fluids in Cylindrical Enclosures with Heated Rotating Top Wall, International Journal of Heat and Mass Transfer, Vol. 124, pp. 885-899, 2018.
  • Turan O. and Chakraborty N., The Effects of Bottom Wall Heating on Mixed Convection of Yield Stress Fluids in Cylindrical Enclosures with a Rotating End Wall, International Journal of Heat and Mass Transfer, Vol. 121, pp. 759-774, 2018.
  • Sajjadi H., Delouei A.A., Sheikholeslami M., Atashafrooz M. and Succi S., Simulation of Three Dimensional MHD Natural Convection using Double MRT Lattice Boltzmann Method, Physica A: Statistical Mechanics and its Applications, Vol. 515, pp. 474-496, 2019.
  • Desouky A.A.E., Ismail H.N.A., Abourabia A.M. and Ahmed N.A., Numerical Simulation of MHD Flow and Heat Transfer Inside T-Shaped Cavity by the Parallel Walls Motion, SN Applied Sciences, Vol.2, No. 4, pp. 1-18, 2020.
  • Atashafrooz M., The Effects of Buoyancy Force on Mixed Convection Heat Transfer of MHD Nanofluid Flow and Entropy Generation in an Inclined Duct with Separation Considering Brownian Motion Effects, Journal of Thermal Analysis and Calorimetry, Vol. 138, No. 5, pp. 3109-3126, 2019.
  • Fu C., Rahmani A., Suksatan W., Alizadeh S.M., Zarringhalam M., Chupradit S. and Toghraie D., Comprehensive Investigations of Mixed Convection of Fe–Ethylene-Glycol Nanofluid inside an Enclosure with Different Obstacles using Lattice Boltzmann Method, Scientific Reports, Vol.11, No. 1, pp.1-16, 2021.
  • منگلی زاده م.، محمدیون م. و مهدویان م.، مطالعه آزمایشگاهی افزایش انتقال گرما درون مبادله‌‌‌کن‌های گرمایی با استفاده از نانوسیال اکسید آلومینا و کویل سیمی در رژیمهای جریانی متفاوت، مجلۀ مهندسی مکانیک دانشگاه تبریز، د. 48، ش. 2، ص. 339-347، 1397.
  • Gouran S., Mohsenian S. and Ghasemi S.E., Theoretical Analysis on MHD Nanofluid Flow between Two Concentric Cylinders using Efficient Computational Techniques, Alexandria Engineering Journal, Vol. 61, No. 4, pp. 3237-3248, 2022.
  • Rostami A.K., Hosseinzadeh K. and Ganji D.D., Hydrothermal Analysis of Ethylene Glycol Nanofluid in a Porous Enclosure with Complex Snowflake Shaped Inner Wall, Waves in Random and Complex Media, Vol. 32, No. 1, pp. 1-18, 2022.
  • منصوری مهریان س.، صفاریان م.، نمازیان ظ. و مرادی کشکولی ف.، مطالعه عددی جابجایی ترکیبی و تولید آنتروپی در حفره لوزوی پرشده با نانوسیال آب-مس با جذب/تولید گرما، مجلۀ مهندسی مکانیک دانشگاه تبریز، د. 48، ش. 4، ص. 289-298، 1397.
  • Izadi M., Mohebbi R. Delouei A.A. and Sajjadi H., Natural Convection of a Magnetizable Hybrid Nanofluid Inside a Porous Enclosure Subjected to Two Variable Magnetic Fields, International Journal of Mechanical Sciences, Vol. 151, pp. 154-169, 2019.
  • Atashafrooz M., Sajjadi H. and Delouei A.A., Interacting Influences of Lorentz Force and Bleeding on the Hydrothermal Behaviors of Nanofluid Flow in a Trapezoidal Recess with the Second Law of Thermodynamics Analysis, International Communications in Heat and Mass Transfer, Vol. 110, Article Number: 104411, 2020.
  • داودی چمزینی م. م.، قاسمی ب. و رئیسی ا.، انتقال گرمای ترکیبی جابجایی آزاد و رسانش در محفظه ای حاوی نانوسیال و سیال خالص جدا شده با یک مانع، مجلۀ مهندسی مکانیک دانشگاه تبریز، د. 51، ش. 1، ص. 87-96، 1400.
  • Hamzah H.K., Ali F.H. and Hatami M., MHD Mixed Convection and Entropy Generation of CNT-Water Nanofluid in a Wavy Lid-Driven Porous Enclosure at Different Boundary Conditions, Scientific Reports, Vol. 12, No. 1, pp.1-27, 2022.
  • Ahmed S.E., Mansour M.A., Hussein A.K. and Sivasankaran S., Mixed Convection From a Discrete Heat Source in Enclosures with Two Adjacent Moving Walls and Filled with Micropolar Nanofluids, Engineering Science and Technology, An International Journal, Vol. 19, No. 1, pp. 364-376, 2016.
  • Sajjadi H., Delouei A.A., Atashafrooz M. and Sheikholeslami M., Double MRT Lattice Boltzmann Simulation of 3-D MHD Natural Convection in a Cubic Cavity with Sinusoidal Temperature Distribution Utilizing Nanofluid, International Journal of Heat and Mass Transfer, Vol. 126, pp. 489-503, 2018.
  • Izadi S., Armaghani T., Ghasemiasl R., Chamkha A.J. and Molana M., A Comprehensive Review on Mixed Convection of Nanofluids in Various Shapes of Enclosures, Powder Technology, Vol. 343, pp. 880-907, 2019.
  • Muhammad N., Nadeem S. and Issakhov A., Finite Volume Method for Mixed Convection Flow of Ag–Ethylene Glycol Nanofluid Flow in a Cavity Having Thin Central Heater, Physica A: Statistical Mechanics and its Applications, Vol. 537, Article Number: 122738, 2020.
  • Yan S.R., Kalbasi R., Parvin A., Tian X.X. and Karimipour A., Comparison of Nusselt Number and Stream Function in Tall and Narrow Enclosures in the Mixed Convection of Hybrid Nanofluid, Journal of Thermal Analysis and Calorimetry, Vol. 143, No. 2, pp.1599-1609, 2021.
  • آتش افروز م. و گنجعلیخان نسب س.، اثرات غیر خاکستری گازهای تابشی بر انتقال گرمای جابجایی ترکیبی در یک کانال شیبدار و دارای جدایش جریان، مجلۀ مهندسی مکانیک دانشگاه تبریز، د. 48، ش. 4، ص. 1-10، 1397.
  • Zabihi M., Lari K. and Amiri H., Coupled Radiative-Conductive Heat Transfer Problems in Complex Geometries using Embedded Boundary Method, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 39, No. 7, pp. 2847-2864, 2017.
  • Sukumar S. and Kar S.P., A Combined Conduction–Radiation Model for Analyzing the Role of Radiation on Freezing of a Biological Tissue, Journal of Thermal Science and Engineering Applications, 12, No. 1, Article Number: 011015, 2020.
  • Li Z.H., Li X.L., Xia X.L. and Sun C., A Hybrid Strategy for Solving Radiation-Conduction in Irregular Geometries Filled with Gray Semitransparent Medium using Monte Carlo Method Combined with Blocked-off and Embedded Boundary Treatments, Numerical Heat Transfer, Part B: Fundamentals, Vol. 77, No. 1, pp. 22-41, 2020.
  • Jarray K., Mazgar A. and Ben Nejma F., Effect of Combined Natural Convection and Non-Gray Gas Radiation on Entropy Generation in a Circular Enclosure with Partial Heating, Advances in Mechanical Engineering, Vol. 11, No. 12, pp. 1-15, 2019.
  • Atashafrooz M., Asadi T. and Yan W.M., Numerical Study on Forced Convection in the Exhaust Problem using the Spectral Line-Based Weighted Sum of Gray Gases Model, International Journal of Heat and Mass Transfer, Vol. 156, Article Number: 119837, 2020.
  • El Moutaouakil L., Boukendil M., Zrikem Z. and Abdelbaki A., Natural Convection and Radiation in a Cavity with a Partially Heated Cylinder, Journal of Thermophysics and Heat Transfer, Vol. 35, No. 2, pp. 312-322, 2021.
  • Ghalambaz M., Sabour M. and Pop I., Free Convection in a Square Cavity Filled by a Porous Medium Saturated by a Nanofluid: Viscous Dissipation and Radiation Effects, Engineering Science and Technology, An International Journal, Vol. 19, No. 3, pp. 1244-1253, 2016.
  • Ali M., Khan W.A., Sultan F. and Shahzad M., Numerical Investigation on Thermally Radiative Time-Dependent Sisko Nanofluid Flow for Curved Surface, Physica A: Statistical Mechanics and its Applications, Vol. 550, Article Number: 124012, 2020.
  • Atashafrooz M., Influence of Radiative Heat Transfer on the Thermal Characteristics of Nanofluid Flow over an Inclined Step in the Presence of an Axial Magnetic Field, Journal of Thermal Analysis and Calorimetry, Vol. 139, No. 5, pp. 3345–3360, 2020.
  • Muhammad T., Waqas H., Khan S.A., Ellahi R. and Sait S.M., Significance of Nonlinear Thermal Radiation in 3D Eyring–Powell Nanofluid Flow with Arrhenius Activation Energy, Journal of Thermal Analysis and Calorimetry, Vol. 143, No. 2, pp. 929-944, 2021.
  • Shah Z., Kumam P., Selim M.M. and Alshehri A., Impact of Nanoparticles Shape and Radiation on the Behavior of Nanofluid under the Lorentz Forces, Case Studies in Thermal Engineering, 26, Article Number: 101161, 2021.
  • Lv Y.P., Shaheen N., Ramzan M., Mursaleen M., Nisar K.S. and Malik M.Y., Chemical Reaction and Thermal Radiation Impact on a Nanofluid Flow in a Rotating Channel with Hall Current, Scientific Reports, Vol. 11, No. 1, pp.1-17, 2021.
  • Farooq U., Waqas H., Muhammad T., Imran M. and Alshomrani A.S., Computation of Nonlinear Thermal Radiation in Magnetized Nanofluid Flow with Entropy Generation, Applied Mathematics and Computation, Article Number: 126900, 2022.
  • Safaei M.R., Karimipour A., Abdollahi A. and Nguyen, T.K., The Investigation of Thermal Radiation and Free Convection Heat Transfer Mechanisms of Nanofluid Inside a Shallow Cavity by Lattice Boltzmann Method, Physica A: Statistical Mechanics and its Applications, Vol. 509, pp. 515-535, 2018.
  • Sheikholeslami M. and Shehzad S.A., Thermal Radiation of Ferrofluid in Existence of Lorentz Forces Considering Variable Viscosity, International Journal of Heat and Mass Transfer, Vol. 109, pp. 82-92, 2017.
  • Sheikholeslami M. and Rokni H.B., Numerical Simulation for Impact of Coulomb Force on Nanofluid Heat Transfer in a Porous Enclosure in Presence of Thermal Radiation, International Journal of Heat and Mass Transfer, Vol. 118, pp. 823-831, 2018.
  • Sheikholeslami M., Sajjadi H., Delouei A.A., Atashafrooz M. and Li Z., Magnetic Force and Radiation Influences on Nanofluid Transportation through a Permeable Media Considering Al2O3 Nanoparticles, Journal of Thermal Analysis and Calorimetry, Vol. 136, No. 6, pp. 2477-2485, 2019.
  • Patankar S.V. and Spalding D.B., A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows, International Journal of Heat and Mass Transfer, Vol. 15, No. 10, p. 1787–1806, 1972.
  • Chamkha A.J. and Abu-Nada E., Mixed Convection Flow in Single-and Double-Lid Driven Square Cavities Filled with Water–Al2O3 Nanofluid: Effect of Viscosity Models, European Journal of Mechanics-B/Fluids, Vol. 36, pp. 82-96, 2012.