بررسی اثر عدم قطعیت در مسیر ماهیچه‌ها بر نیروی تماسی مفصل زانو در یک مدل اسکلتی-عضلانی بهبود یافته‌ حین حرکت اسکات

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری، گروه مهندسی مکانیک، دانشگاه بیرجند، بیرجند، ایران

2 استاد، گروه بیومکانیک حرکتی، دانشکده علوم و فنون سلامت، دانشگاه ای‌تی‌اچ زوریخ، سوئیس

3 دکتری، گروه بیومکانیک حرکتی، دانشکده علوم و فنون سلامت، دانشگاه ای‌تی‌اچ زوریخ، سوئیس

4 استاد، گروه مهندسی مکانیک، دانشگاه بیرجند، بیرجند، ایران

چکیده

عدم قطعیت درباره‌ی نتایج مدل‌های اسکلتی-عضلانی، یکی از اصلی‌ترین مسائلی است که کم‌تر مورد توجه کاربران قرار گرفته است. گرچه نتایج این مدل‌ها برای گیت دارای دقت کافی است، اما در حرکاتی با خمش شدید مفصل زانو مانند اسکات خطاهای بالا گزارش شده است. اخیرا با بروزرسانی سطوح پیچش در مدل قدرتمند راجاگوپال، نسخه­ی بروزشده­ای از آن جهت شبیه­سازی اسکات عمیق (مدل کتلی) ارائه شده است. اما نتایج شبیه­سازی توسط این مدل، میانگین خطای بالای نیروی تماسی مفصل زانو (%60<) را در افراد موجود در مجموعه داده­ی آزمایشگاهی CAMS نشان می­دهد. برای این منظور از نرم افزار Opensim و رابط برنامه­نویسی Opensim-MATLAB استفاده شده است. در تحقیق حاضر با استفاده از روش احتمالاتی مونت کارلو، اثر عدم قطعیت در مسیر ماهیچه‌های مدل اسکلتی-عضلانی کتلی بر نیروی تماسی مفصل زانو مورد بررسی قرار گرفته است. میانگین کران اطمینان %95-5 برای خطای نسبی نیروی تماسی زانو در سیکل کامل اسکات %02/19 ± 73/43 و در اسکات عمیق %77 ± 159 محاسبه شده است. بنابراین، اصلاح پارامترهای مربوط به مسیر عضلات در مدل­ مختص شبیه­سازی حرکت اسکات می­تواند سبب بهبود نتایج گردد.

کلیدواژه‌ها

موضوعات


  • Niki Y., Takeda Y., Udagawa K., Enomoto H., Toyama Y., Suda Y. Is greater than 145° of deep knee flexion under weight-bearing conditions safe after total knee arthroplasty? a fluoroscopic analysis of Japanese-style deep knee flexion. Bone Joint J., 95, No. 6, pp. 782-787, 2013.
  • Bergmann G., Bender A., Graichen F., Dymke J., Rohlmann A., Trepczynski A., Heller M.O., Kutzner I. Standardized loads acting in knee implants. PLoS One, 9, No. 1, pp. e86035, 2014.
  • Li X., Wang C., Guo Y., Chen W. An approach to developing customized total knee replacement implants. Healthc Eng, Vol. 2017, No. pp. 9298061, 2017.
  • Myers C.A., Laz P.J., Shelburne K.B., Davidson B.S. A probabilistic approach to quantify the impact of uncertainty propagation in musculoskeletal simulations. Ann Biomed Eng, 43, No. 5, pp. 1098-111, 2015.
  • Arnold E.M., Ward S.R., Lieber R.L., Delp S.L. A model of the lower limb for analysis of human movement. Ann Biomed Eng, 38, No. 2, pp. 269-79, 2010.
  • Delp S.L., Loan J.P., Hoy M.G., Zajac F.E., Topp E.L., Rosen J.M. An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans Biomed Eng, 37, No. 8, pp. 757-67, 1990.
  • Rajagopal A., Dembia C.L., DeMers M.S., Delp D.D., Hicks J.L., Delp S.L. Full-Body Musculoskeletal Model for Muscle-Driven Simulation of Human Gait. IEEE Trans Biomed Eng, 63, No. 10, pp. 2068-79, 2016.
  • Kinney A.L., Besier T.F., D'Lima D.D., Fregly B.J. Update on grand challenge competition to predict in vivo knee loads. Biomech Eng, Vol. 135, No. 2, pp. 021012, 2013.
  • Trepczynski A., Kutzner I., Kornaropoulos E., Taylor W.R., Duda G.N., Bergmann G., Heller M.O. Patellofemoral joint contact forces during activities with high knee flexion. J Orthop Res, 30, No. 3, pp. 408-15, 2012.
  • Taylor W.R., Schutz P., Bergmann G., List R., Postolka B., Hitz M., Dymke J., Damm P., Duda G., Gerber H., Schwachmeyer V., Hosseini Nasab S.H., Trepczynski A., Kutzner I. A comprehensive assessment of the musculoskeletal system: the CAMS-Knee data set. J Biomech Eng, Vol. 65, No. pp. 32-39, 2017.
  • Schellenberg F., Taylor W.R., Trepczynski A., List R., Kutzner I., Schutz P., Duda G.N., Lorenzetti S. Evaluation of the accuracy of musculoskeletal simulation during squats by means of instrumented knee prostheses. Med Eng Phys, 61, No. pp. 95-99, 2018.
  • Imani Nejad Z., Khalili K., Hosseini Nasab S.H., Schutz P., Damm P., Trepczynski A., Taylor W.R., Smith C.R. The Capacity of Generic Musculoskeletal Simulations to Predict Knee Joint Loading Using the CAMS-Knee Datasets. Ann Biomed Eng, 48, No. 4, pp. 1430-1440, 2020.
  • Imani Nejad Z., Khalili K., Hosseini Nasab S.H., Schutz P., Damm P., Trepczynski A., Taylor W.R., Smith C.R. Evaluating the Accuracy of Predicted Knee Joint Loading by Generic Musculoskeletal Models using the CAMS-Knee Datasets. Vol. pp. 2020.
  • Catelli D.S., Wesseling M., Jonkers I., Lamontagne M. A musculoskeletal model customized for squatting task. Comput Method Biomec, 22, No. 1, pp. 21-24, 2019.
  • Lai A.K.M., Arnold A.S., Wakeling J.M. Why are Antagonist Muscles Co-activated in My Simulation? A Musculoskeletal Model for Analysing Human Locomotor Tasks. Ann Biomed Eng, 45, No. 12, pp. 2762-2774, 2017.
  • Carbone V., van der Krogt M.M., Koopman H., Verdonschot N. Sensitivity of subject-specific models to Hill muscle-tendon model parameters in simulations of gait. J Biomech, 49, No. 9, pp. 1953-1960, 2016.
  • Cleather D.I., Bull A.M. Lower-extremity musculoskeletal geometry affects the calculation of patellofemoral forces in vertical jumping and weightlifting. Proc Inst Mech Eng H, 224, No. 9, pp. 1073-83, 2010.
  • Martelli S., Valente G., Viceconti , Taddei F. Sensitivity of a subject-specific musculoskeletal model to the uncertainties on the joint axes location. Comput Methods Biomech Biomed Engin, Vol. 18, No. 14, pp. 1555-63, 2015.
  • Valente G., Martelli S., Taddei F., Farinella G., Viceconti M. Muscle discretization affects the loading transferred to bones in lower-limb musculoskeletal models. Proc Inst Mech Eng H, 226, No. 2, pp. 161-9, 2012.
  • Ackland D.C., Lin Y.C., Pandy M.G. Sensitivity of model predictions of muscle function to changes in moment arms and muscle-tendon properties: a Monte-Carlo analysis. J Biomech, 45, No. 8, pp. 1463-71, 2012.
  • Brand R.A., Pedersen D.R., Friederich J.A. The sensitivity of muscle force predictions to changes in physiologic cross-sectional area. J Biomech, 19, No. 8, pp. 589-96, 1986.
  • De Groote F., Van Campen A., Jonkers I., De Schutter J. Sensitivity of dynamic simulations of gait and dynamometer experiments to hill muscle model parameters of knee flexors and extensors. J Biomech, 43, No. 10, pp. 1876-83, 2010.
  • Redl C., Gfoehler M., Pandy M.G. Sensitivity of muscle force estimates to variations in muscle-tendon properties. Hum Mov Sci, 26, No. 2, pp. 306-19, 2007.
  • Scovil C.Y., Ronsky J.L. Sensitivity of a Hill-based muscle model to perturbations in model parameters. J Biomech, 39, No. 11, pp. 2055-63, 2006.
  • Sopher R.S., Amis A.A., Davies D.C., Jeffers J.R. The influence of muscle pennation angle and cross-sectional area on contact forces in the ankle joint. J Strain Anal Eng Des, 52, No. 1, pp. 12-23, 2017.
  • Reed E.B., Hanson A.M., Cavanagh P.R. Optimising muscle parameters in musculoskeletal models using Monte Carlo simulation. Computer Methods in Biomechanics and Biomedical Engineering, 18, No. 6, pp. 607-617, 2015.
  • Vollenweider A., Lorenzetti S., Smith C.R., Taylor W.R., Hosseini Nasab S.H. Impact of Variability in Muscle Properties on the Joint Reaction Force Estimates during Deep Knee Bending. Journal, No. pp. 2015.
  • Hosseininasab S.H., Vollenweider A.C., Taylor W.R., Lorenzetti S.R. Uncertainty quantification in joint reaction force analysis during a simulated squat activity. 15th International Symposium on Computer Methods in Biomechanic and Biomedical Engineering and 3rd Conference on Imaging and Visualization, No. pp. 2018.
  • Murray W.M., Delp S.L., Buchanan T.S. Variation of muscle moment arms with elbow and forearm position. J Biomech, 28, No. 5, pp. 513-25, 1995.
  • Dooley E., Carr J., Carson E., Russell S. The effects of knee support on the sagittal lower-body joint kinematics and kinetics of deep squats. J Biomech, 82, No. pp. 164-170, 2019.
  • ایمانی نژاد ز.، تیلور و.، اسمیت ک. و خلیلی خ.، مقایسه عملکرد مدل اسکلتی-عضلانی راجاگوپال و نسخه‌های بروزشده‌ آن در پیش بینی نیروی تماسی مفصل زانو حین دو فعالیت راه رفتن و اسکات. مکانیک سازه ها و شاره ها، د. 11، ش. 5، ص 83-94، 1400.
  • Delp S.L., Anderson F.C., Arnold A.S., Loan P., Habib A., John C.T., Guendelman E., Thelen D.G. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng, 54, No. 11, pp. 1940-50, 2007.
  • Myers C.A. Probabilistic Musculoskeletal simulation methods to address intersegmental dependencies of the knee, hip, and spine Journal, Doctor of Philosophy, pp. 2015.
  • Valente G., Taddei F., Jonkers I. Influence of weak hip abductor muscles on joint contact forces during normal walking: probabilistic modeling analysis. Journal of Biomechanics, 46, No. 13, pp. 2186-2193, 2013.
  • Buford W.L., Jr., Ivey F.M., Jr., Malone J.D., Patterson R.M., Peare G.L., Nguyen D.K., Stewart A.A. Muscle balance at the knee--moment arms for the normal knee and the ACL-minus knee. IEEE Trans Rehabil Eng, 5, No. 4, pp. 367-79, 1997.
  • Spoor C.W., van Leeuwen J.L. Knee muscle moment arms from MRI and from tendon travel. J Biomech, 25, No. 2, pp. 201-6, 1992.