بهبود عملکرد لوله‌ی گرمایی نوسانی تک‌لوپ بسته با تزریق میکروذرات مس

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی مکانیک، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران

2 استادیار، گروه مهندسی مکانیک، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران

3 استاد، گروه مهندسی مکانیک، دانشگاه صنعتی شریف، تهران، ایران

چکیده

در این پژوهش آزمایشگاهی، عملکرد یک لوله­ی گرمایی نوسانی تک­لوپ با ساختاری بسته در حضور سیال پایه (آب مقطر) و سیالِ حاوی میکروذرات مس مورد بررسی قرار گرفته است. به منظور ارزیابی تاثیر پارامترهای مختلف بر کارایی لوله، مشخصه­هایی نظیر توان گرمایی اعمالی بر تبخیرکن، نسبت پُرشدگی و غلظت میکروذرات مس مطالعه شدند. یافته­ها نشان می­دهند که رژیم جریانِ درون لوله برای توان­های گرمایی پایین به صورت اسلاگ پلاگ بوده و در توان­های گرمایی بالا به سمت جریان حلقوی پیش رفته است. لازم به ذکر است که مقاومت گرمایی لوله با افزایش توان گرمایی و غلظت میکروذرات مس کاهش یافته و حداقل مقدار آن در توان گرمایی 60 وات و نسبت پُرشدگی 60% برابر با 0/61℃/W شده است. در نهایت با توجه به میزان خطاهای موجود برای هر پارامتر و به کمک رابطه­ی هلمن، حداکثر مقدار عدم قطعیت برای آزمایش­ها حدود 8% محاسبه شد.

کلیدواژه‌ها

موضوعات


[1] Khandekar S., Groll M.., an insight into thermo-hydrodynamic coupling in closed loop pulsating heat pipes. International Journal of Thermal Sciences, Vol. 43, pp. 13-20, 2003.
[2] Khandekar S., Groll M., Charoensawan P., Terdtoon P., Pulsating Heat Pipes: Thermo-fluidic Characteristics and Comparative Study with Single Phase Thermosyphon. Proceedings of 12th International Heat Transfer Conference, 2002.
[3] Faghri A., Heat pipe science and technology. Washington, DC: Taylor and Francis, 1995.
[4] Nekrashevych I., Nikolayev V. S., Reprint of: Effect of tube heat conduction on the pulsating heat pipe start-up. Applied Thermal Engineering, Vol. 126, pp. 1077-1082, 2017.
[9]هوشمند پ. شفیعی م ب. محسن زاده م.، بررسی نظری و تجربی تولید آب شیرین­کن­های گرمایی در حالت فعال و غیر فعال، مجله علمی پژوهشی مهندسی مکانیک تبریز، ش. 3، ص 251-255، 1400.
[6] Shafii M. B., Faghri A., Zhang Y., Thermal modeling of unlooped and looped pulsating heat pipes. ASME J. Heat Transf, Vol. 123, pp. 1159-1171, 2001.
[7] Funkano T., Characteristics of Gas-Liquid two phase flow in a capillary tube. Journal of Engineering and Design, pp. 59-68,1993.
[8] Glynne Jones P., Tudor M. J., Beeby S. P., White N. M., An electrormagnetic, vibration-powered generator for intelligent sensor systems. Sensors and Actuators, pp. 344-349, 2004.
[9 Jiaqiang E., xiaohuan Z., Haili L., Jianmei C., Wei Z., Qingguo P., Field synergy analysis for enhancing heat transfer capability of a novel narrow-tube closed oscillating heat pipe. Applied Energy, Vol. 175, pp.218-228, 2016.
[10] Hada S.,  Jain D., Effects of Filled Ratio, Heat Input and Orientation on Closed Loop Pulsating Heat Pipe. International journal of scientific research in science engineering and technology, Vol. 3, pp. 2394-4099, 2016.
[11] Han H., Cui X., Zhu Y., Sun S., A comparative study of the behavior of working fluids and their properties on the performance of pulsating heat pipes (PHP). International Journal of Thermal Sciences, Vol. 82, pp.138-147, 2014.
[12] Kwon H., Kim S., Experimental investigation on the thermal performance of a micro pulsating heat pipe with a dual-diameter channel. International Journal of Heat and Mass Transfer, Vol. 89, pp. 817-828, 2015.
[13] Bastakoti D., Zhang H., Cai W., Li F., An experimental investigation of thermal performance of pulsating heat pipe with alcohols and surfactant solutions. International Journal of Heat and Mass Transfer, Vol. 117, pp. 1032-1040, 2017.
[14] Ma H. B., Wilson C., Yu Q., Park K., Choi U. S., Tirumala  M., An Experimental Investigation of Heat Transport Capability in a Nanofluid Oscillating Heat Pipe. Journal of Heat Transfer. Vol.128, pp.1213–1216, 2006.
[15] Lin Y. H., Kang S. W., Chen H. L., Effect of Silver Nanofluid on Pulsating Heat Pipe Thermal Performance. Applied Thermal Engineering, Vol.28, pp.1312–1317, 2008.
[16] Mohammadi M., Mohammadi M., Shafii M. B., Experimental Investigation of a Pulsating Heat Pipe Using Ferrofluid (Magnetic Nanofluid). Journal of Heat Transfer, Vol. 134, 2012.
[17] Zhou Y., Cui X., Weng J., Shi S., Han H., Chen C., Experimental investigation of the heat transfer performance of an oscillating heat pipe with graphene nanofluids. Powder Technology, Vol. 332, pp.371-380, 2018.
[18] Nazari M. A., Ghasempour R., Ahmadi M. H., Heydarian G., Shafii M. B., Experimental investigation of graphene oxide Nanofluid on heat transfer enhancement of pulsating heat pipe. International Communications in Heat and Mass Transfer, Vol. 91, pp.90-94, 2018.
[19] Zufar M., Gunnasegaran P., Kumar H. M., Ng K. C., Numerical and experimental investigations of hybrid nanofluids on pulsating heat pipe performance. International Journal of Heat and Mass Transfer, Vol. 146, 2020.
[20] Sarafraz M. M., Hormozi F., Experimental study on the thermal performance and efficiency of a copper made thermosyphon heat pipe charged with alumina–glycol based nanofluids. Powder Technology, Vol. 266, pp.378-387, 2014.
[21] Kim B., Li L., Kim J., Kim D., A study on thermal performance of parallel connected pulsating heat pipe. Applied Thermal Engineering, Vol.126, pp.1063-1068, 2017.
[22] Meija J., Coplen T. B., Berglund M., Brand W. A., Bievre  P. D., Groning M., Holden N. E., Irrgeher J., Loss R. D., Walczyk T., Prohaska T., Atomic weights of the elements 2013 (IUPAC Technical Report). Pure and Applied Chemistry, Vol. 88, pp.265-291, 2016.
[23] Khandekar S., Thermo-hydrodynamics of closed loop pulsating heat pipes, Ph.D. Thesis, Institut für Kernenergetik und Energiesysteme der Universität Stuttgart, 2004.
[24] Holman j. p., experimental methods for engineers, 7th ed., McGraw-Hill, New York, 2001.