مطالعه آزمایشگاهی اثر ردیابی خورشید بر عملکرد یک اجاق خورشیدی با لوله‌ تحت خلأ

نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشگر، گروه طراحی ماشین‌آلات صنایع غذایی، مؤسسه پژوهشی علوم و صنایع غذایی، مشهد، ایران

2 استادیار، گروه طراحی ماشین‌آلات صنایع غذایی، مؤسسه پژوهشی علوم و صنایع غذایی، مشهد، ایران

چکیده

در این مطالعه، اثر ردیابی خورشید بر عملکرد یک اجاق خورشیدی با لوله تحت خلأ به‌صورت تجربی بررسی شده است. برای این منظور، ردیابی خورشید در طول آزمایش در گام‌های‌ زمانی 5 دقیقه‌ای و به‌صورت دستی صورت گرفته است. همچنین در آزمایشی دیگر، اجاق خورشیدی تحت زاویه 30 درجه نسبت به افق و رو به جنوب قرار داده شده است. در این پژوهش، اجاق خورشیدی با لوله تحت خلأ برای به جوش آوردن آب استفاده شده است. همچنین، مقایسه عملکرد اجاق خورشیدی در دو وضعیت ثابت و متحرک از دو دیدگاه انرژی و اگزرژی صورت گرفته است. نتایج نشان می‌دهد که مدت زمان لازم برای به جوش آوردن 800 گرم آب در آزمایش‌ مربوط به وضعیت ثابت برای اجاق خورشیدی 2 ساعت و 25 دقیقه است؛ این در حالی است که ردیابی خورشید توسط اجاق خورشیدی این زمان را به مدت 1 ساعت و 5 دقیقه (44/83 درصد) کاهش می‌دهد. همچنین، بازده انرژی و اگزرژی اجاق خورشیدی با ردیابی خورشید به ترتیب حدود 4/92 درصد و 0/57 درصد زیاد می‌شود.

کلیدواژه‌ها

موضوعات


  • Tawfik M .A., Sagade A. A., Palma-Behnke R., El-Shal H. M. and Abd Allah W. , Solar cooker with tracking-type bottom reflector: An experimental thermal performance evaluation of a new design. Solar Energy, Vol. 220, pp. 295-315, 2021.
  • Weldu A., Zhao L., Deng S., Mulugeta N., Zhang Y., Nie X. and Xu W., Performance evaluation on solar box cooker with reflector tracking at optimal angle under Bahir Dar climate. Solar Energy, Vol. 180, pp. 664-677, 2019.
  • Khan M. M., Iqbal S. Md., Ravi N. T. and Pesala B., Design and development of an optical system for obtaining fixed orientation of concentrated sunlight for indoor applications. Solar Energy, Vol. 204, pp. 515-529, 2020.
  • Guidara Z., Souissi M., Morgenstern A. and Maalej A., Thermal performance of a solar box cooker with outer reflectors: Numerical study and experimental investigation. Solar Energy, Vol. 158, pp. 347-359, 2017.
  • Hosseinzadeh M., Sadeghirad R., Zamani H., Kianifar A., Mirzababaee S. M. and Faezian A., Experimental study of a nanofluid-based indirect solar cooker: Energy and exergy analyses. Solar Energy Materials and Solar Cells, Vol. 221, 110879, 2021.
  • Arenas J. M., Design, development and testing of a portable parabolic solar kitchen. Renewable energy, Vol. 32, No. 2, pp. 257-266, 2007.
  • Sonune A. V. and Philip S. K., Development of a domestic concentrating cooker. Renewable energy, Vol. 28, No. 8, pp. 1225-1234, 2003.
  • Ruivo C. R., Carrillo-Andrés A. and Apaolaza-Pagoaga X., Experimental determination of the standardised power of a solar funnel cooker for low sun elevations. Renewable Energy, Vol. 170, pp. 364-374, 2021.
  • Bhave A. G. and Thakare K. A., Development of a solar thermal storage cum cooking device using salt hydrate. Solar Energy, Vol. 171, pp. 784-789, 2018.
  • Mussard M., Gueno A. and Nydal O. J., Experimental study of solar cooking using heat storage in comparison with direct heating. Solar Energy, Vol. 98, pp. 375-383, 2013.
  • Servín-Campuzano H., González-Avilés M., Sobral H., Peña-Gomar M. and López-Miranda A., Soot-based coatings for solar cookers. Journal of Thermal Analysis and Calorimetry, Vol. 138, No. 1, pp. 153-162, 2019.
  • Shukla S. K., Comparison of energy and exergy efficiency of community and domestic type parabolic solar cookers. International Journal of Green Energy, Vol. 6, No. 5, pp. 437-449, 2009.
  • Ozturk H. H., Comparison of energy and exergy efficiency for solar box and parabolic cookers. Journal of Energy Engineering, Vol. 133, No. 1, pp. 53-62, 2007.
  • Al-Soud M. S., Abdallah E., Akayleh A., Abdallah S. and Hrayshat E. S., A parabolic solar cooker with automatic two axes sun tracking system. Applied Energy, Vol. 87, No. 2, pp. 463-470, 2010.
  • Abu-Malouh R., Abdallah S. and Muslih I. M., Design, construction and operation of spherical solar cooker with automatic sun tracking system. Energy Conversion and Management, Vol. 52, No. 1, pp. 615-620, 2011.
  • Sharma A. and Yadav A., Experimental Study of a Solar Oven based on Evacuated Tube Collector in Indian Climatic Conditions. Journal of Physics: Conference Series, Vol. 1240, 012124, 2019.
  • Zhao Y., Zheng H., Sun B., Li C. and Wu Y., Development and performance studies of a novel portable solar cooker using a curved Fresnel lens concentrator. Solar Energy, Vol. 174, pp. 263-272, 2018.
  • Hosseinzadeh M., Faezian A., Mirzababaee S. M. and Zamani H., Parametric analysis and optimization of a portable evacuated tube solar cooker. Energy, Vol. 194, 116816, 2020.
  • Sharma, S. D., Takeshi Iwata, Hiroaki Kitano, and Kazunobu Sagara. "Thermal performance of a solar cooker based on an evacuated tube solar collector with a PCM storage unit." Solar Energy 78, no. 3: 416-426, 2005
  • Kumar, Rakesh, Rajendra Singh Adhikari, H. P. Garg, and Ashvini Kumar. "Thermal performance of a solar pressure cooker based on evacuated tube solar collector." Applied Thermal Engineering 21, no. 16 (2001): 1699-1706.
  • Singh H, Saini K, Yadav A. Experimental comparison of different heat transfer fluid for thermal performance of a solar cooker based on evacuated tube collector. Environment, Development and Sustainability. 2015 Jun;17(3):497-511.
  • Farooqui SZ. A vacuum tube based improved solar cooker. Sustainable Energy Technologies and Assessments. 2013 Sep 1;3:33-9.
  • Kumar S, Kumar A, Yadav A. Experimental investigation of a solar cooker based on evacuated tube collector with phase change thermal storage unit in Indian climatic conditions. International Journal of Renewable Energy Technology. 2018;9(3):310-36.
  • Hosseinzadeh M., Sardarabadi M. and Passandideh-Fard M., Energy and exergy analysis of nanofluid based photovoltaic thermal system integrated with phase change material. Energy, Vol. 147, pp. 636-647, 2018.
  • Onokwai A. O., Okonkwo U. C., Osueke C. O., Okafor C. E., Olayanju T. M. A. and Dahunsi S. O., Design, modelling, energy and exergy analysis of a parabolic cooker. Renewable energy, Vol. 142, pp. 497-510, 2019.
  • Kumar N., Vishwanath G. and Gupta A., An exergy based test protocol for truncated pyramid type solar box cooker. Energy, Vol. 36, No. 9, pp. 5710-5715, 2011.
  • Hosseinzadeh M., Sadeghirad R., Zamani H., Kianifar A., Mirzababaee S. , The performance improvement of an indirect solar cooker using multi-walled carbon nanotube-oil nanofluid: An experimental study with thermodynamic analysis, Renewable Energy, Vol. 165, pp. 14-24, 2021.
  • Öztürk H. H., Experimental determination of energy and exergy efficiency of the solar parabolic-cooker. Solar energy, Vol. 77, No. 1, pp. 67-71, 2004.