طراحی کنترل‌کننده چندگانه برای سیستم‌های غیرخطی با استفاده از یک روند بهبود یافته انتخاب مدل‌های محلی نامی

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار، دانشکده مهندسی برق، مجتمع آموزش عالی فنی و مهندسی اسفراین، خراسان شمالی، ایران

چکیده

این مقاله بر انتخاب مدل‌های محلی نامی در روش مدل‌های چندگانه برای سیستم‌های غیرخطی متمرکز است و از ابزار gap metric برای اندازه‌گیری فاصله بین مدل‌های خطی استفاده می‌شود. همچنین به منظور تجزیه سیستم غیرخطی به تعداد کمتری از مدل‌های محلی نامی، دو مرحله تجزیه و طراحی کنترل‌کننده‌های محلی با یکدیگر یکپارچه می‌شوند. کنترل‌کننده‌های محلی طراحی شده در زیرناحیه‌های ابتدایی می‌توانند برای زیرناحیه‌های آتی مؤثر باشند در حالیکه در روش‌های مبتنی بر جستجوی متوالی این موضوع نادیده گرفته می‌شود و لذا این روش‌ها از افزونگی کنترل‌کننده‌های محلی و متناظراً پیچیدگی کنترل‌کننده نهایی رنج می‌برند. بدین‌ترتیب با در نظر گرفتن تأثیر کنترل‌کننده‌های محلی طراحی شده در زیرناحیه‌های قبل، روند انتخاب مدل‌های محلی نامی در روش مبتنی بر جستجوی متوالی بهبود یافته و تعداد کنترل‌کننده‌های محلی به صورتی چشم‌گیر کاهش ‌می‌یابد. برای بررسی عملکرد روش ارائه شده، سیستم pH که یک سیستم شدیداً غیرخطی است مورد مطالعه واقع می‌شود. نتایج شبیه‌سازی نشان می‌دهد که عملکرد کنترل‌کننده نهایی در ردیابی ورودی مرجع و دفع اثر اغتشاش مناسب است در حالیکه تعداد کنترل‌کننده‌های محلی در مقایسه با روش جستجوی متوالی به نصف کاهش می‌یابد.

کلیدواژه‌ها

موضوعات


[1]  Murray-Smith R. and Johansen T., Multiple model approaches to nonlinear modelling and control. London: Taylor & Francis, 1997.
[2]  Galán O., Romagnoli J.A., and Palazoglu A., Robust H∞ control of nonlinear plants based on multi-linear models: an application to a bench-scale pH neutralization reactor, Chemical Engineering Science, Vol. 55, No. 20, pp. 4435-4450, 2000.
[3]  Galan O., Romagnoli J.A., and Palazoglu A., Real-time implementation of multi-linear model-based control strategies-an application to a bench-scale pH neutralization reactor, Journal of Process Control, Vol. 14, No. 5, pp. 571-579, 2004.
[4]  Toscano R. and Lyonnet P., Robustness analysis and synthesis of a multi-PID controller based on an uncertain multimodel representation, Computers & chemical engineering, Vol. 31, No. 2, pp. 66-77, 2006.
[5]  Toscano R., Robust synthesis of a PID controller by uncertain multimodel approach, Information Sciences, Vol. 177, No. 6, pp. 1441-1451, 2007.
]6[  حق‌پناه ر.، شفیعی م.ح.، کنترل مقاوم سیستم های غیرخطی با استفاده از رویکرد تقریب های تکرار شونده، مجله مهندسی مکانیک دانشگاه تبریز، د. 50، ش. 3، ص. 45-41، 1399.
[7]  Wang F., Bahri P., Lee P.L., and Cameron I., A multiple model, state feedback strategy for robust control of non-linear processes, Computers & chemical engineering, Vol. 31, No. 5-6, pp. 410-418, 2007.
[8]  Arslan E., Çamurdan M.C., Palazoglu A., and Arkun Y., Multimodel scheduling control of nonlinear systems using gap metric, Industrial & engineering chemistry research, Vol. 43, No. 26, pp. 8275-8283, 2004.
[9]  Chen Q., Gao L., Dougal R.A., and Quan S., Multiple model predictive control for a hybrid proton exchange membrane fuel cell system, Journal of Power Sources, Vol. 191, No. 2, pp. 473-482, 2009.
[10]         Dougherty D. and Cooper D., A practical multiple model adaptive strategy for single-loop MPC, Control engineering practice, Vol. 11, No. 2, pp. 141-159, 2003.
[11]         Du J., Song C., Yao Y., and Li P., Multilinear model decomposition of MIMO nonlinear systems and its implication for multilinear model-based control, Journal of Process Control, Vol. 23, No. 3, pp. 271-281, 2013.
[12]         Johansen T.A. and Foss B.A., Identification of non-linear system structure and parameters using regime decomposition, Automatica, Vol. 31, No. 2, pp. 321-326, 1995.
[13]         Hosseini S., Fatehi A., Johansen T.A., and Khaki-Sedigh A., Multiple model bank selection based on nonlinearity measure and H-gap metric, Journal of Process Control, Vol. 22, No. 9, pp. 1732-1742, 2012.
[14]         Hariprasad K., Bhartiya S., and Gudi R.D., A gap metric based multiple model approach for nonlinear switched systems, Journal of process control, Vol. 22, No. 9, pp. 1743-1754, 2012.
[15]         Kersting S. and Buss M., How to Systematically Distribute Candidate Models and Robust Controllers in Multiple-Model Adaptive Control: A Coverage Control Approach, IEEE Transactions on Automatic Control, Vol. 63, No. 4, pp. 1075-1089, 2017.
[16]         Zhao Z., Xia X., Wang J., Gu J., and Jin Y., Nonlinear dynamic matrix control based on multiple operating models, Journal of Process Control, Vol. 13, No. 1, pp. 41-56, 2003.
[17]         Du J. and Johansen T.A., A gap metric based weighting method for multimodel predictive control of MIMO nonlinear systems, Journal of Process Control, Vol. 24, No. 9, pp. 1346-1357, 2014.
[18]         Saki S. and Bolandi H., Optimal direct adaptive soft switching multi-model predictive control using the gap metric for spacecraft attitude control in a wide range of operating points, Aerospace Science and Technology, Vol. 77, pp. 235-243, 2018.
[19]         Ahmadi M., Rikhtehgar P., and Haeri M., A multi-model control of nonlinear systems: A cascade decoupled design procedure based on stability and performance, Transactions of the Institute of Measurement and Control, Vol. 42, No. 7, pp. 1271-1280, 2019.
[20]         Du J. and Johansen T.A., Integrated multimodel control of nonlinear systems based on gap metric and stability margin, Industrial & Engineering Chemistry Research, Vol. 53, No. 24, pp. 10206-10215, 2014.
[21]         Ahmadi M. and Haeri M., Multimodel Control of Nonlinear Systems: An Improved Gap Metric and Stability Margin-Based Method, Journal of Dynamic Systems, Measurement, and Control, Vol. 140, No. 8, 081013 (17 pages), 2018.
[22]         Aufderheide B. and Bequette B.W., A variably tuned multiple model predictive controller based on minimal process knowledge. In Proceedings of the 2001 American Control Conference, Arlington, USA, 2001.
[23]         Du J., Song C., and Li P., Multilinear Model Control of Hammerstein-like Systems Based on an Included Angle Dividing Method and the MLD-MPC Strategy, Industrial & Engineering Chemistry Research, Vol. 48, No. 8, pp. 3934-3943, 2009.
[24]         Zribi A., Chtourou M., and Djemal M., A Systematic Determination Approach of Model's Base Using Gap Metric for Nonlinear Systems, Journal of Dynamic Systems, Measurement, and Control, Vol. 138, No. 3, 031008 (7 pages), 2016.
[25]         Du J., Zhang L., and Han Q., A novel weighting method for multi-linear MPC control of Hammerstein systems based on included angle, ISA transactions, Vol. 80, pp. 212-220, 2018.
[26]         Jalali A.A. and Golmohammad H., An optimal multiple-model strategy to design a controller for nonlinear processes: A boiler-turbine unit, Computers & Chemical Engineering, Vol. 46, No. 0, pp. 48-58, 2012.
[27]         Du J., Song C., and Li P., Multimodel control of nonlinear systems: an integrated design procedure based on gap metric and H∞ loop shaping, Industrial & Engineering Chemistry Research, Vol. 51, No. 9, pp. 3722-3731, 2012.
[28]         Haj Salah A.A., Garna T., Ragot J., and Messaoud H., Transition and control of nonlinear systems by combining the loop shaping design procedure and the gap metric theory, Transactions of the Institute of Measurement and Control, Vol. 38, No. 8, pp. 1004-1020, 2016.
[29]         Haj Salah A.A., Garna T., Ragot J., and Messaoud H., Synthesis of a robust controller with reduced dimension by the Loop Shaping Design Procedure and decomposition based on Laguerre functions, Transactions of the Institute of Measurement and Control, Vol. 38, No. 10, pp. 1236-1260, 2016.
[30]         Du J. and Johansen T.A., Integrated multilinear model predictive control of nonlinear systems based on gap metric, Industrial & Engineering Chemistry Research, Vol. 54, No. 22, pp. 6002-6011, 2015.
[31]         Ahmadi M. and Haeri M., A New Structured Multimodel Control of Nonlinear Systems by Integrating Stability Margin and Performance, Journal of Dynamic Systems, Measurement, and Control, Vol. 139, No. 9, 091014 (10 pages), 2017.
[32]         El-Sakkary A., The gap metric: Robustness of stabilization of feedback systems, IEEE Transactions on Automatic Control, Vol. 30, No. 3, pp. 240-247, 1985.
[33]         Zhou K. and Doyle J.C., Essentials of Robust Control. Upper Saddle River, NJ: Prentice Hall, 1998.
[34]         Du J., Zhang L., Chen J., Li J., and Zhu C., Multi-model predictive control of Hammerstein-Wiener systems based on balanced multi-model partition, Mathematical and Computer Modelling of Dynamical Systems, Vol. 25, No. 4, pp. 333-353, 2019.
[35]         Prasad G.M. and Rao A.S., Evaluation of gap-metric based multi-model control schemes for nonlinear systems: An experimental study, ISA transactions, Vol. 94, pp. 246-254, 2019.
]36[          عابدینی ع.، عابدینی مزرعه ع.، کنترل pH با استفاده از طراحی رویتگر مد لغزشی و مقایسه آن با PI و GSPI، مجله مهندسی مکانیک دانشگاه تبریز، د. 49، ش. 2، ص. 81-77، 1398.
[37]         Ahmadi M. and Haeri M., An integrated best–worst decomposition approach of nonlinear systems using gap metric and stability margin, Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, Vol. 235, No. 4, pp. 486-502, 2021.