[1] Whitcher F., Simulation of in vivo loading conditions of nitinol vascular stent structures. Comput Struct, 64 (5/6), 1005–1011, 1997.
[2] Migliavacca F., Petrini L., Stainless and shape memory alloy coronary stents: a computational study on the interaction with the vascular wall. Biomech Model Mechanobiol, 2 (4) 205–217, 2004.
[3] Petrini, L., Migliavacca, F., Computational studies of shape memory alloy behavior in biomedical applications. J Biomech Eng, 127 (4), 716–725, 2005.
[4]Theriault P., Brailovski V., Finite element modeling of a progressively expanding shape memory stent. J Biomech, 39 (15), 2837–2844, 2006.
[5] Wu W., Qi, M., “Delivery and release of nitinol stent in carotid artery and their interactions: a finite element analysis”. J biomech, 40(13), 3034-3040, 2007.
[6] Morgan, R., Adam A., Use of metallic stents and balloons in the esophagus and gastrointestinal tract. J Vasc Interv Radiol, 12 (3, 283–297, 2001.
[7] Assali A., Sdringola S., Endovascular repair of traumatic pseudoaneurysm by uncovered self-expandable stenting with or without transstent coiling of the aneurysm cavity. Catheter Cardiovasc Interv, 53 (2), 253–258, 2001.
[8]Walser E., Robinson B., Clinical outcomes with airway stents for proximal versus distal malignant tracheobronchial obstructions. J Vasc Interv Radiol, 15 (5), 471–477, 2004.
[9]Resnick S., Rome V., Use of a partially deployed wallstent to act as an inferior vena cava filtration device during coil embolization of a high-flow arteriovenous fistula. J Vasc Interv Radiol, 17 (2), 369–372, 2006.
[10] Jedwab M., Clerc C., A study of the geometrical and mechanical properties of a self-expanding metallic stent–theory and experiment. J Appl Biomater, 4 (1, 77–85, 1993.
[11] Wang R., Ravi-Chandar, K., “Mechanical response of a metallic aortic stent – Part I: Pressure diameter relationship”. J Appl Mech, 71, 697–705, 2004.
[12] Wang R., Ravi-Chandar, K., Mechanical response of a metallic aortic stent – Part II: A beam on elastic foundation model. J Appl Mech, 71, 706–712, 2004.
[13] Canic S., Ravi-Chandar K., Mathematical model analysis of Wallstent and AneuRx – dynamic responses of bare-metal endoprosthesis compared with those of stent-graft. Tex Heart I J, 32 (4), 502–506, 2005.
[14] Brand M., Ryvkin, M., The cardiocoil stent-artery interaction. J Biomech Eng, 127 (2), 337–344, 2005.
]15[خسروی آ. سلیمی بنی م. بحرینی زاد ح، شبیه سازی جامد-سیال رگ مصنوعی آئورت ساخته شده از مواد هدفمند با ضریب ناهمنگی متفاوت مجله مهندسی مکانیک تبریز، 48(1) ،185 -179، 1397.
]16[ خسروی آ. سلیمی بنی م. بحرینی زاد ح، واص ویسکو الاستیک گرافت های رگ: مقایسه بین شریان سینه ای داخلی و ورید سافنوس کوچک، مجله مهندسی مکانیک تبریز، 48) 4(،127-131، 1397.
[17] Jayendirana R, Nourb B, Ruimia., A Computational analysis of Nitinol stent-graft for endovascular aortic repair (EVAR) of abdominal aortic aneurysm (AAA): Crimping, sealing and fluid-structure interaction (FSI) . International Journal of Cardiology, 304,164-171.2020.
[18]Lei L, Qi X, Li S, et al., Finite element analysis for fatigue behavior of a self-expanding Nitinol peripheral stent under physiological biomechanical conditions. Computers in Biology and Medicine,104, 205–214.2019.
[19]Zhou XC, Yang F, Yan Gong X, et al., New Nitinol endovascular stent-graft system for abdominal aortic aneurysm with finite element analysis and experimental verification. Rare Metals,19(6):1950038.2019.
[20]Elsisy M, Tillman B, W.G. C, et al., Comprehensive assessment of mechanical behavior of an extremely long stent graft to control hemorrhage in torso. Journal of Biomedical Materials Research Part B Applied Biomaterials,108(5):2192-2203.2020.
[21] Nuutinen, J., Clerc, C., “Theoretical and experimental evaluation of the radial force of self-expanding braided bioabsorbable stents”. J Biomater Sci Polym Ed, 14 (7), 677–687, 2003.
[22] Stoeckel, D., Pelton, A., Self-expanding Nitinol stents: material and design considerations. Eur. Radio, 14, 292–301, 2004.
[23] Kleinstreuer, C., Li, Z., Computational mechanics of Nitinol stent grafts”. J. Biomech, 41, 2370–2378, 2008.
[24] Nematzadeh, F., Sadrnezhaad, S., Effects of Material Properties on Mechanical Performance of Nitinol Stent Designed for Femoral Artery: Finite Element Analysis, Sci. Ir, 19(6), 1564–1571, 2012.
[25] Auricchio, F., Taylor, R., Shape-memory alloys: modeling and numerical simulations of the finite-strain super elastic behavior. Computer Methods in Applied Mechanics and Engineering, 143, 175–194, 1996.
[26] Lubliner J., Auricchio F., Generalized plasticity and shape memory alloy. International Journal of Solids and Structures, 33, 991–1003, 1996.
[27] Gong, X., Duerig, T., “Finite element analysis and experimental evaluation of superelastic Nitinol stents”. In Proceedings of the International Conference on Shape Memory and Superelastic Technology Conference – SMST. 417–423, 2003.
[28] Liang C., Rogers, C. A., One-dimensional thermomechanical constitutive relations for shape memory materials, Jitney. Mater. Sys. Struct, 1207–234, 1990.