یک راهکار موجود جهت استفاده از موشکهای سوخت جامد تاکتیکی برای منظورهای فضایی افزودن لوله بلست به نازل میباشد. مجهز کردن نازل به لوله بلست علاوه بر ایجاد فضا برای افزودن زیرسیستمهای مورد نیاز، امکان پایداری و کنترل سادهتر سامانه را نیز به وجود میآورد. در مطالعه حاضر ابتدا با استفاده از حل عددی، یک نازل سوخت جامد موجود از نقطه نظر هندسی و آیرودینامیکی به منظور دستیابی به عملکرد و راندمان مورد تحلیل و بررسی قرار گرفته است. حل عددی انجام شده با استفاده از نرمافزار Fluent بوده و مدل آشفتگی به کار رفته از نوع تنشهای رینولدز پنج معادلهای است. به منظور افزودن لوله بلست دو هندسه جدید از نازل مذکور طراحی شده و با توجه به شرایط حاکم بر مسئله، تغییرات سرعت، فشار و درجه حرارت جریان عبوری از نازل مورد بحث قرار گرفته است. با توجه به مشخص بودن دما و فشار محفظه احتراق، خواص گازهای ورودی به نازل با استفاده از نرمافزار تحلیل تعادل شیمیایی محاسبه شده است. نتایج نشان میدهند که افزودن لوله بلست باعث افت فشار کل کمتر از 2 درصد و مقدار ضربه ویژه حدود 3 درصد شده است که با توجه به مزایای به دست آمده قابل قبول است.
Javed A., Sinha P. K. and Chakraborty D., Numerical Exploration of Solid Rocket Motor Blast Tube Flow Field. Defence Science Journal, Vol. 63, No. 6, pp. 616-621 November 2013.
Petrovic A. and Svorcan J., Comparison of Novel Variable Area Convergent-Divergent Nozzle Performances Obtained by Analytic, Computational and Experimental Methods. Applied Mathematical Modelling Journal, Volume 57, pp. 206-225, May 2018.
Singh J. and Luis E., Effect of Nozzle Geometry on Critical-Subcritical Flow Transitions. Heliyon Journal, Volume 5, e01273, February 2019.
Chen F. and Lei F., Influence of Straight Nozzle Geometry on the Supersonic Under-Expanded Gas Jets. Nuclear Engineering and Design Journal, Volume 339, pp. 92-104, December 2018.
امیری م.، میرزایی م.، پوریوسفی غ. و دوست محمودی ع.، طراحی و بررسی تجربی نازل افزایش دهنده سرعت در مقطع آزمون تونل باد سرعت پایین. مجلۀ مهندسی مکانیک دانشگاه تبریز، د. 91، ش. 2، ص 9-15، 1399.
Li X. and Xuejun F., Flow Characteristic of Highly Underexpanded Jets from Various Nozzle Geometries. Applied Thermal Engineering Journal, Volume 125, pp. 240-253, October 2017.
Ding H. and Chao W., Transient Conjugate Heat Transfer in Critical Flow Nozzles. International Journal of Heat and Mass Transfer, Volume 104, pp. 1-12, 2017.
Mousavi M. and Roohi E., Three Dimensional Investigation of the Shock Train Structure in a Convergent–Divergent Nozzle. Acta AstronauticaJournal, 105, pp. 117–127, 2014.
Ellis R. A. and Berdoyes M., Short course - nozzle design. AIAA and Snecma Propulsion Solide, 2012.
Zikanov O., Essential Computational Fluid Dynamics. John Wiley, 2010.
Deshpande N., Vidwans S., Mahale P., Joshi R. and Jagtap K., Theoretical and CFD Analysis of De Laval Nozzle. International Journal of Mechanical and Production Engineering, 2, No. 4, pp. 33-36, 2014.
Tahsini A. M. and Ebrahimi M., Blast Tube Effects on Internal Ballistics of SRM. In Proc. of 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2006.
Sinha P.K. and Javed, Performance analysis of propulsive blast tube configurations using CFD. Proccedings of the seminar on Aerospace Technology Challenges in the Millenium, Hyderabad, December 15-16, 2003.
Scholtz K.B., Optimisation of Solid Rocket Motor Blast Tube and Nozzle Assemblies using Computational Fluid Dynamics. Thesis submitted in fulfilment of the requirements for the degree Master of Technology, Cape Peninsula University of Technology, 2017.
رهایی ن.، جعفری ا. و رفعی ر.، بررسی انتقال حرارت گذرا در دیوارههای شیپوره همگرا-واگرا. مجلۀ علمی و پژوهشی مکانیک سازهها و شارهها، د. 10، ش. 3، ص 245-263، 1399.
Sutton G. P. and Biblarz O., Rocket Propulsion Elements. John Wiley and Sons, New York, NY, USA, 7th edition, 2001.
Alam M. and Setoguchi T., Nozzle Geometry Variations on the Discharge Coefficient. Propulsion and Power ResearchJournal, Volume 5, pp. 22-33, March 2016.
Watanabe Y., Sakazume N. and Yonezawa K., LE-7A Engine Nozzle Flow Separation Phenomenon and the Possibility of RSS Suppression by the Step Inside the Nozzle. 40th AIAA/ASME/SAE/ASEE Joint Propulsion, Conference and Exhibit, Fort Lauderdale, Florida, 11 - 14 Jul 2004.
Mahdavy H. and Hamedi M. H., 2D Simulation of Designed Dual Throat Nozzle using Geometrical Analogy. Journal of Space Science and Technology, 10, No. 31, pp. 23-32, 2017.
Fazeli H., Naseh H., Mirshams M. and Novinzadeh A. B., Comprehensive Pattern in Designing Low-Thrust Space Propulsion Systems. Journal of Space Science and Technology, 7, No 20, pp. 9-21, 2014.
رنجبر, محمد علی و پور موید, علیرضا . (1401). طراحی هندسی و آیرودینامیکی نازل جهت افزودن لوله بلست. مهندسی مکانیک دانشگاه تبریز, 52(2), 213-222. doi: 10.22034/jmeut.2022.46492.2923
MLA
رنجبر, محمد علی , و پور موید, علیرضا . "طراحی هندسی و آیرودینامیکی نازل جهت افزودن لوله بلست", مهندسی مکانیک دانشگاه تبریز, 52, 2, 1401, 213-222. doi: 10.22034/jmeut.2022.46492.2923
HARVARD
رنجبر, محمد علی, پور موید, علیرضا. (1401). 'طراحی هندسی و آیرودینامیکی نازل جهت افزودن لوله بلست', مهندسی مکانیک دانشگاه تبریز, 52(2), pp. 213-222. doi: 10.22034/jmeut.2022.46492.2923
CHICAGO
محمد علی رنجبر و علیرضا پور موید, "طراحی هندسی و آیرودینامیکی نازل جهت افزودن لوله بلست," مهندسی مکانیک دانشگاه تبریز, 52 2 (1401): 213-222, doi: 10.22034/jmeut.2022.46492.2923
VANCOUVER
رنجبر, محمد علی, پور موید, علیرضا. طراحی هندسی و آیرودینامیکی نازل جهت افزودن لوله بلست. مهندسی مکانیک دانشگاه تبریز, 1401; 52(2): 213-222. doi: 10.22034/jmeut.2022.46492.2923