[1] Weigan B., Semmler K., Wolfersdorf J.V., Heat Transfer Technology for Internal Passages of Air-Cooled Blades for Heavy-Duty Gas Turbines. Annals of the New York Academy of Sciences, Vol. 934, pp. 93-179-, 2001.
[2] Han J.C., Fundamental Gas Turbine Heat Transfer. Journal of Thermal Science and Engineering Applications, Vol. 5, 2013.
[3] Han J.C., Dutta S, Ekkad S., Gas Turbine Heat Transfer and Cooling Technology. 2012.
[4] Wagner J.H., Johnson B.V, Kopper F.C., Heat Transfer in Rotating Serpentine Passages With Smooth Walls. Journal of Turbomachinery. Vol. 113, pp. 330 -321-, 1991.
[5] Hwang G.J., Tzeng S.C., Mao C.P., Heat Transfer of Compressed Air Flow in a Spanwise Rotating Four-Pass Serpentine Channel. Journal of heattransfer, Vol. 112.1999.
[6] Zehnder F., Schüler M., Weigand B., Wolfersdorf J.V, and Olaf Neumann S., The Effect of Turning Vanes on Pressure Loss and Heat Transfer of a Ribbed Rectangular Two-Pass Internal Cooling Channel. Journal of Turbomachinery, Vol. 133, 2009.
[7] حسینعلیپور ح. افکاری پ. شهبازیان ح.، مقایسه تاثیر چیدمان مختلف تکنولوژی ریب های V شکل در افزایش توربولانس جریان و انتقال حرارت در خنک کاری داخلی پره های توربین گاز. مجله مهندسی مکانیک مدرس، د. 17، ش. 5، ص 316-326، 1396.
[8] Lei J., Su P., Xi G, Lorenzini G., The effect of a hub turning vane on turbulent flow and heat transfer in a four-pass channel at high rotation numbers. International Journal of Heat and Mass Transfer, Vol. 92, 2016.
[9] Chu H.C., Chen H.C., Han J.C, Numerical Simulation of Flow and Heat Transfer in Rotating Cooling Passage With Turning Vane in Hub Region. Journal of Heat Transfer, Vol. 140, 2017.
[10] Erelli R., Saha A., Panigrahi P., Influence of turn geometry on turbulent fluid flow and heat transfer in a stationary two-pass square duct. International Journal of Heat and Mass Transfer, Vol. 89, 2015.
[11] Saha K., Acharya S., Effect of Bend Geometry on Heat Transfer and Pressure Drop in a Two-Pass Coolant Square Channel for a Turbine. Journal of Turbomachinery, Vol. 135, 2012.
[12] Coletti F., Verstraete T., Vanderwielen T., Bulle J. and Arts T., Optimization of a U-Bend for Minimal Pressure Loss in Internal Cooling Channels: Part II-Experimental Validation. journal of Turbomachinery, Vol. 135, 2011.
[13] Verstraete T., Coletti F., Bulle J., Vanderwielen T. and Arts T., Optimization of a U-Bend for Minimal Pressure Loss in Internal Cooling Channels: Part I-Numerical Method. journal of Turbomachinery, Vol. 135, 2011.
[14]حسینعلیپور ح. شهبازیان ح. قبادی م. نوروزی م.، آنالیز سیالاتی-حرارتی اثرات دوران و بویانسی دورانی در خنککاری داخلی پرههای توربین گاز، مطالعه آزمایشگاهی. مکانیک سازهها و شارهها، د.8، ش.3، ص277-288، 1397.
[15] Singh P., Ji Y, Ekkad S., Multi-Pass Serpentine Cooling Designs for Negating Coriolis Force Effect on Heat Transfer: Smooth Channels. Journal of Turbomachinery,Vol. 141, 2019.
[16] Brahim B., Numerical Simulation of the Effect of Rib Orientation on Fluid Flow and Heat Transfer in Rotating Serpentine Passages. Journal of Thermal Science and Engineering Applications, Vol. 9, 2016.
[17] Namgoong H., Ireland P., Son C., Optimisation of 18 U-shaped bend shape for a turbine blade cooling passage leading to a pressure loss coefficient of approximately0.6. Journal of Aerospace Engineering, Vol. 230, 2015.
[18] Lei J., Li S.J., Han J.H., Zhang L., Moon H.K., Heat Transfer in Rotating Multipass Rectangular Ribbed Channel With and Without a Turning Vane, Journal of Heat Transfer. Vol. 135, 2013.
[19] Wu B., Yang X.,Liu Z., Feng., Effects of novel turning vanes on pressure loss and tip-wall heat transfer in an idealized U-bend channel, International Communications in Heat and Mass Transfer. Vol. 121, p. 105072, 2021.
[20] Ansys Fluent Theory Guide17/2. Antsy Inc, USA, 2016.
[21] Webb R., Kim N.H., Principles of Enhanced Heat Transfer. 2004.