تولید بدون آلایندگی هیدروژن و مایع سازی آن با استفاده از انرژی خورشیدی و الکترولایزر غشاء پروتونی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی مکانیک، دانشگاه تبریز، تبریز، ایران.

2 دانشجوی کارشناسی ارشد، گروه مهندسی مکانیک، دانشگاه تبریز، تبریز، ایران.

3 استاد، گروه مهندسی مکانیک، دانشگاه تبریز، تبریز، ایران.

4 دکتری، گروه مهندسی مکانیک، واحد تهران غرب، دانشگاه آزاد اسلامی، تهران، ایران.

چکیده

استفاده از انرژی خورشیدی و الکترولیز آب برای تولید توان و گاز هیدروژن در سال‌های اخیر بسیار مورد توجه قرار گرفته است، زیرا در این روش گاز هیدروژن و اکسیژن بدون هیچ گونه آلایندگی از آب جدا می‌شوند، تولید هیدروژن در فرآیندهایی با خروجی کربن صفر، به نام هیدروژن سبز شناخته می-شود که در این پژوهش از این روش استفاده شده است. آرایه‌های خورشیدی برای تامین توان الکترولایزر غشاء پروتونی و بخش مایع سازی استفاده شده‌اند، شهر بندر عباس برای اجرای سیستم پیشنهادی در نظر گرفته شده است. نوآوری این پژوهش پیشنهاد فرآیند ترکیبی تولید توان، جداسازی و مایع سازی گاز هیدروژن بدون آلایندگی و با کارایی بالاتر در مقایسه با دیگر چرخه‌های مشابه است. ظرفیت تولید برق آرایه‌های خورشیدی 6000 کیلو وات است در حالی که ظرفیت جداسازی الکترولایزر 438 کیلوگرم بر ساعت گاز اکسیژن و 55 کیلوگرم بر ساعت گاز هیدروژن است. مصرف ویژۀ انرژی چرخۀ مایع سازی 07/5 کیلو وات ساعت به ازای هر کیلوگرم هیدروژن مایع بوده و بیشترین تخریب اگزرژی مربوط به الکترولایزر و سپس مبادله‌کن‌های گرمایی است.

کلیدواژه‌ها

موضوعات


  • Akrami E., Nemati, A., Nami H., and Ranjbar F., Exergy and exergoeconomic assessment of hydrogen and cooling production from concentrated PVT equipped with PEM electrolyzer and LiBr-H2O absorption chiller, J. Hydrogen Energy, Vol. 43, No. 2, 2018.
  • یاری, م., غایبی, ه., و قوامی گرگری, س., تحلیل انرژی و اگزرژی سیستم نوین ریفرمینگ بخارآب بیوگاز خورشیدی برای تولید هیدروژن, مهندسی مکانیک دانشگاه تبریز د 48، شماره 4، ص 319-328، 1398.
  • Nami H., Mohammadkhani F., and Ranjbar F., Utilization of waste heat from GTMHR for hydrogen generation via combination of organic Rankine cycles and PEM electrolysis, Energy Convers. Manag., Vol. 127, pp. 589–598, 2016.
  • Yu M., Wang K., and Vredenburg H., Insights into low-carbon hydrogen production methods: Green, blue and aqua hydrogen,” J. Hydrogen Energy, Vol. 46, No. 41, pp. 21261–21273, 2021.
  • Yang J. H., Yoon Y., Ryu M., An S. K., Shin J., and Lee C. J., Integrated hydrogen liquefaction process with steam methane reforming by using liquefied natural gas cooling system, Energy, Vol. 255, 2019.
  • Faramarzi S., Mafi M., SMM Nainiyan, and Ghasemiasl R., Modification of a fuel peak-shaving system in Shahid Mofateh power plant, ISME, Tehran, 2021.
  • Bicer Y. and Dincer I., Analysis and performance evaluation of a renewable energy based multigeneration system, Energy, Vol. 94, pp. 623–632, 2016.
  • Aasadnia M., Mehrpooya M., and Ansarinasab H., A 3E evaluation on the interaction between environmental impacts and costs in a hydrogen liquefier combined with absorption refrigeration systems, Therm. Eng., Vol. 159, 2019.
  • Yuksel Y. E., Ozturk M., and Dincer I., Energetic and exergetic assessments of a novel solar power tower based multigeneration system with hydrogen production and liquefaction, J. Hydrogen Energy, Vol. 44, No. 26, pp. 13071–13084, 2019.
  • Yuksel Y. E., Ozturk M., and Dincer I., Analysis and assessment of a novel hydrogen liquefaction process, J. Hydrogen Energy, Vol. 42, No. 16, pp. 11429–11438, 2017.
  • Shiva Kumar, S. and Himabindu V., Hydrogen production by PEM water electrolysis – A review, Sci. Energy Technol., Vol. 2, No. 3, 2019.
  • Moradi Nafchi F., Baniasadi E., Afshari E., and Javani N., Performance assessment of a solar hydrogen and electricity production plant using high temperature PEM electrolyzer and energy storage, J. Hydrogen Energy, Vol. 43, No. 11, 2018.
  • El-Emam R. S. and Dincer I., Development and assessment of a novel solar heliostat-based multigeneration system, J. Hydrogen Energy, Vol. 43, No. 5, 2018.
  • Nouri M., Miansari M., and Ghorbani B., Exergy and economic analyses of a novel hybrid structure for simultaneous production of liquid hydrogen and carbon dioxide using photovoltaic and electrolyzer systems, Clean. Prod., Vol. 259, p. 120862, 2020.
  • Ranjbar S. F., Nami H., Khorshid A., and Mohammadpour H., Hydrogen production using waste heat recovery of MATIANT non-emission system via PEM electrolysis, Modares Mech. Eng., Vol. 16, No. 10, pp. 42–50, 2017.
  • Moradi R. and Groth K. M., Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis, J. Hydrogen Energy, Vol. 44, No. 23, pp. 12254–12269, 2019.
  • Faramarzi S., Mousavi Nainiyan S. M., Mafi M., and Ghasemiasl R., Proposing a simultaneous production cycle of liquid natural gas and liquid hydrogen, , ISME, Tehran, 2021.
  • فرامرزی, س., موسوی نائینیان, س. م., مافی, م.,و قاسمی اصل, ر., اصلاح و بهینه سازی چرخه مایع ساز هیدروژن مجهز به سیستم تبخیر کننده گاز طبیعی مایع, مهندسی مکانیک دانشگاه تبریز, شماره 3، 1401 (انتشار آنلاین).
  • Seyedmatin P., Karimian S., Rostamzadeh H., and Amidpour M., Electricity and hydrogen co-production via scramjet multi-expansion open cooling cycle coupled with a PEM electrolyzer, Energy, Vol. 199, p. 117364, 2020.
  • Faramarzi S., Nainiyan S. M. M., Mafi M., and Ghasemiasl R., A novel hydrogen liquefaction process based on LNG cold energy and mixed refrigerant cycle, J. Refrig., Vol. 131, No. 1, pp. 263–274, 2021.
  • Donaubauer P. J., Cardella U., Decker L., and Klein H., Kinetics and Heat Exchanger Design for Catalytic Ortho-Para Hydrogen Conversion during Liquefaction, Eng. Technol., Vol. 42, No. 3, pp. 669–679, 2019.
  • Smith E. M., A POSSIBLE METHOD OF IMPROVING ENERGY EFFICIENT PARA-LH2 PRODUCTION, 1984.
  • نامی ح., جمالی س., رنجبر ف., و یاری م., تحلیل ترمودینامیکی و مطالعه ی پارامتری یک سیستم تولید همزمان با ترکیب چرخه ی توربین گاز و چرخه ی کالینا, مهندسی مکانیک دانشگاه تبریز، د 47، شماره 3، ص 271-279، 1397.
  • Yin L. and Ju Y., Process optimization and analysis of a novel hydrogen liquefaction cycle, J. Refrig., Vol. 110, pp. 219–230, 2020.
  • Ioroi T. Yasuda, K., Siroma Z., Fujiwara N., and Miyazaki Y., Thin film electrocatalyst layer for unitized regenerative polymer electrolyte fuel cells, Power Sources, Vol. 112, No. 2, pp. 583–587, 2002.
  • Xu X., Liu J., Jiang C., and Cao L., The correlation between mixed refrigerant composition and ambient conditions in the PRICO LNG process, Energy, Vol. 102, pp. 1127–1136, 2013.
  • نوربخش سعداباد آ., رادمان س., رنجبر س. ف., و نامی خلیله ده م., تحلیل ترمواکونومیک و بهینه‎ سازی چندهدفه یک سیستم راندمان بالا برمبنای چرخه‎ های توربین گاز و رانکین مجهز به ژنراتور ترموالکتریک, مهندسی مکانیک دانشگاه تبریز, 1401 (انتشار آنلاین).
  • Kotas T. J., Exergy analysis of simple processes, in The Exergy Method of Thermal Plant Analysis, Elsevier, 1985.
  • Faramarzi S., Mousavi Nainiyan S. M., Mafi M., and Ghasemiasl R., Genetic algorithm optimization of two natural gas liquefaction methods based on energy, exergy, and economy analyses: the case study of Shahid Rajaee power plant peak-shaving system, Gas Process., Vol. 9, No. 1, pp. 91–108, 2021.
  • Nami H., Akrami E., and Ranjbar F., Hydrogen production using the waste heat of Benchmark pressurized Molten carbonate fuel cell system via combination of organic Rankine cycle and proton exchange membrane (PEM) electrolysis, Therm. Eng., Vol. 114, 2017.
  • Fraunhofer ISE testing operation of hydrogen feed-in to gas grid, Fuel Cells Bull., vol. 2018, No. 4, p. 11, 2018.
  • Berstad D., Skaugen G., and Wilhelmsen Ø., Dissecting the exergy balance of a hydrogen liquefier: Analysis of a scaled-up claude hydrogen liquefier with mixed refrigerant pre-cooling, J. Hydrogen Energy, Vol. 46, No. 11, pp. 8014–8029, 2021.