ارزیابی انرژی و اگزرژی چرخه‌ی جدید تولید همزمان توان، گرمایش، سرمایش و آب‌شیرین‌کن به روش تقطیر چند مرحله‌ای و اسمز معکوس

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، دانشکده مهندسی مکانیک، دانشگاه شهید مدنی آذربایجان، تبریز، ایران

2 استادیار، دانشکده مهندسی مکانیک، دانشگاه شهید مدنی آذربایجان، تبریز، ایران

چکیده

در این مطالعه، یک چرخه‌ی جدید تولید همزمان توان، گرما و سرما یکپارچه شده با آب شیرین­کن آب دریا به روش تقطیر چند مرحله­ای و اسمز معکوس و سامانه خورشیدی با استفاده از تحلیل­های انرژی و اگزرژی مورد ارزیابی قرار گرفته است. به منظور تولید توان از چرخه‌ی گازی به عنوان محرک اصلی و چرخه‌ی رانکین آلی به عنوان چرخه‌ی پایین دستی بهره برده شده است. نتایج این مطالعه نشان می­دهد در اثر افزودن سامانه خورشیدی در مجاورت چرخه‌ی رانکین آلی، افزایش راندمان چرخه‌ی رانکین آلی از 38.778 درصد به 44.592 درصد به میزان 5.813 درصد بهبود می­گردد. به علاوه، در میزان خنک­کاری ثابت، ضریب عملکرد بخش سرمایش یک افزایش 1.275 درصدی از مقدار 1.596 به 1.617 را تجربه می­کند. همچنین، با توجه به بالابودن توان تولیدی چرخه‌ی توربین گازی نسبت به توان تولیدی چرخه‌ی رانکین، افزودن سیستم خورشیدی به چرخه‌ی پایه (بدون سیستم خورشیدی) باعث افزایش راندمان گرمایشی و اگزرژی به ترتیب به میزان 638/0 و 085/0 درصد می­گردد. همچنین ظرفیت شیرین­سازی سیستم پیشنهادی با استفاده از سیستم اسمز معکوس، Ton/h  8/726 افزایش می­یابد.

کلیدواژه‌ها

موضوعات


[1]     Chen, C., et al., Sustainably integrating desalination with solar power to overcome future freshwater scarcity in China. Global Energy Interconnection, 2019. 2(2): p. 98-113.
[2]     Altmann, T., et al., Primary energy and exergy of desalination technologies in a power-water cogeneration scheme. Applied Energy, 2019. 252: p. 113319.
[3]     López-Zavala, R., et al., Absorption cooling and desalination system with a novel internal energetic and mass integration that increases capacity and efficiency. Desalination, 471pp. 114144,2019.
[4]     Dong, Z., et al., Dynamical modeling and simulation analysis of a nuclear desalination plant based on the MED-TVC process. Desalination, 2019. 456: p. 121-135.
[5]     Farsi, A. and I. Dincer, Development and evaluation of an integrated MED/membrane desalination system. Desalination, 2019. 463: p. 55-68.
[6]     Desideri, A., et al., Steady-state and dynamic validation of a parabolic trough collector model using the ThermoCycle Modelica library. Solar Energy, 2018. 174: p. 866-877.
[7]     Xu, L., et al., Analysis of optical and thermal factors’ effects on the transient performance of parabolic trough solar collectors. Solar Energy, 2019. 179: p. 195-209.
[8]     Quezada–García, S., et al., Modeling and simulation to determine the thermal efficiency of a parabolic solar trough collector system. Case Studies in Thermal Engineering, 2019: p. 100523.
[9]     Sandá, A., S.L. Moya, and L. Valenzuela, Modelling and simulation tools for direct steam generation in parabolic-trough solar collectors: A review. Renewable and Sustainable Energy Reviews, 2019. 113: p. 109226.
[10]   Zheng, X., et al., Mathematical modeling and performance analysis of an integrated solar heating and cooling system driven by parabolic trough collector and double-effect absorption chiller. Energy and Buildings, 2019. 202: p. 109400.
[11]   Caglayan, H. and H. Caliskan, Thermodynamic based economic and environmental analyses of an industrial cogeneration system. Applied Thermal Engineering, 2019. 158: p. 113792.
[12]   Coppitters, D., et al., Techno-economic feasibility study of a solar-powered distributed cogeneration system producing power and distillate water: Sensitivity and exergy analysis. Renewable Energy, 2019.
[13]   Khaliq, A., E.M.A. Mokheimer, and M. Yaqub, Thermodynamic investigations on a novel solar powered trigeneration energy system. Energy Conversion and Management, 2019. 188: p. 398-413.
[14]   Yilmaz, F., M. Ozturk, and R. Selbas, Development and techno-economic assessment of a new biomass-assisted integrated plant for multigeneration. Energy Conversion and Management, 2019. 202: p. 112154.
[15]   Ren, F., et al., Multi-objective optimization of combined cooling, heating and power system integrated with solar and geothermal energies. Energy Conversion and Management, 2019. 197: p. 111866.
[16]   عبدالعلی پورعدل, م., et al., تحلیل ترمودینامیکی یک سیستم تولید همزمان بر مبنای توربین گازی با سوخت بیوگاز برای تولید توان، آب شیرین، گرمایش و هیدروژن. مهندسی مکانیک دانشگاه تبریز,، د 51، ش 4، ، ص   209--217، 1400
[17]   حاج عبداللهی, ح. and و. قمری,   مدلسازی و بهینه سازی فنی اقتصادی سیستم‌های هیبریدی تولید سرمایش، گرما، توان و آب شیرین. مهندسی مکانیک دانشگاه تبریز، د 51، ش 4، ص 276-267، 1400.  
 [18]  Abdolalipouradl, M., et al., Thermodynamic and exergoeconomic analysis of two novel tri-generation cycles for power, hydrogen and freshwater production from geothermal energy. Energy Conversion and Management, 2020. 226: p. 113544.
[19]   Abdolalipouradl, M., F. Mohammadkhani, and S. Khalilarya, A comparative analysis of novel combined flash-binary cycles for Sabalan geothermal wells: Thermodynamic and exergoeconomic viewpoints. Energy, 2020. 209: p. 118235.
[20]   Dincer, I., M.A. Rosen, and P. Ahmadi, Optimization of Energy Systems. 2017: Wiley.
[21]   Bejan, A., G. Tsatsaronis, and M.J. Moran, Thermal design and optimization. 1995: John Wiley & Sons.
[22]   Valero, A., et al., CGAM problem: Definition and conventional solution. Energy, 1994. 19(3): p. 279-286.
[23]   Bejan, A., et al., Thermal Design and Optimization. 1996: Wiley.
[24]   You, H., J. Han, and Y. Liu, Performance assessment of a CCHP and multi-effect desalination system based on GT/ORC with inlet air precooling. Energy, 2019. 185: p. 286-298.
[25]   Shah, R.K. and D.P. Sekulic, Fundamentals of Heat Exchanger Design. 2003: Wiley.
[26]   H. Mistry, K., M. Antar, and J. H. Lienhard V, An improved model for multiple effect distillation. Vol. 51. 2012. 1-15.
[27]   Abdelhay, A., H.S. Fath, and S.A. Nada, Solar driven polygeneration system for power, desalination and cooling. Energy, 2020. 198: p. 117341.
[28]   Sharaf Eldean, M.A. and A.M. Soliman, Study of Using Solar Thermal Power for the Margarine Melting Heat Process. J Sol Energy Eng, 2015. 137(2): p. 0210041-2100413.
[29]   Dincer, I. and M.A. Rosen, Chapter 3 - Chemical Exergy, in Exergy (Second Edition), I. Dincer and M.A. Rosen, Editors. 2013, Elsevier. p. 31-49.
[30]   Sharqawy, M.H., S.M. Zubair, and J.H. Lienhard, Second law analysis of reverse osmosis desalination plants: An alternative design using pressure retarded osmosis. Energy, 2011. 36(11): p. 6617-6626.