یکی از کارآمدترین سامانههای تهویه مطبوع، پمپهای گرمایی زمینی میباشند. از مشکلات اساسی این نوع پمپها میتوان به هزینهی بالای نصب آنها اشاره کرد. با انتخاب آرایش مناسب مبادلهکن گرمایی زمینی مورد استفاده در این پمپها میتوان با افزایش آهنگ انتقال گرما با زمین اطراف و کاهش تعداد چاههای حفر شده در هزینهها صرفهجویی کرد. در این مطالعه، عملکرد گرمایی مبادلهکن زمینی با آرایش مارپیچ سهگانه مورد بررسی قرار گرفته است. برای این منظور، به شبیهسازی سه بعدی و گذرای دینامیک سیالات محاسباتی مبادلهکن گرمایی زمینی و زمین اطراف آن پرداخته شده است. ضمن مقایسه آرایش مارپیچ سهگانه با مبادلهکن آرایش تک مارپیچ به مطالعه تاثیر پارامترهای گام و قطر حلقههای مارپیج بر عملکرد این نوع مبادلهکن پرداخته شده است. نتایج نشان میدهد آرایش مارپیچ سهگانه تبادل گرما با زمین اطراف را حدود 28% نسبت به آرایش تک مارپیچ افزایش میدهد. بررسی پارامترهای مورد مطالعه نشان داد گام حلقههای مارپیج بیشترین تاثیر بر عملکرد سیستم را دارد و با کاهش آن، عملکرد سیستم بهبود مییابد.
Batini N., Loria A. F. R., Conti P., Testi D., Grassi W. and Laloui L., Energy and geotechnical behaviour of energy piles for different design solutions. Applied Thermal Engineering, Vol. 86, pp. 199-213, 2015.
Cecinato F. and Loveridge F. A., Influences on the thermal efficiency of energy piles. Energy, Vol. 82, pp. 1021-1033, 2015.
Yang W., Lu P. and Chen Y., Laboratory investigations of the thermal performance of an energy pile with spiral coil ground heat exchanger. Energy and Buildings, Vol. 128, pp. 491-502, 2016.
Yoon S., Lee S.-R., Xue J., Zosseder K., Go G.-H. and Park H., Evaluation of the thermal efficiency and a cost analysis of different types of ground heat exchangers in energy piles. Energy Conversion and Management, Vol. 105, pp. 393-402, 2015.
Zarrella A., De Carli, M. and Galgaro, A., Thermal performance of two types of energy foundation pile: helical pipe and triple U-tube. Applied Thermal Engineering, Vol. 61, no. 2, pp. 301-310, 2013.
Katsura T., Nagano K., Sakata Y. and Wakayama, H., A design and simulation tool for ground source heat pump system using energy piles with large diameter. International Journal of Energy Research, Vol. 43, no. 4, pp. 1505-1520, 2019.
Akrouch G. A., Sánchez M. and Briaud J.-L., An experimental, analytical and numerical study on the thermal efficiency of energy piles in unsaturated soils. Computers and Geotechnics, Vol. 71, pp. 207-220, 2016.
Hu P., Zha J., Lei F., Zhu N. and Wu, T., A composite cylindrical model and its application in analysis of thermal response and performance for energy pile. Energy and buildings, Vol. 84, pp. 324-332, 2014.
Lee C. and Lam H., A simplified model of energy pile for ground-source heat pump systems. Energy, Vol. 55, pp. 838-845, 2013.
Zhao Q., Chen B. and Liu F., Study on the thermal performance of several types of energy pile ground heat exchangers: U-shaped, W-shaped and spiral-shaped. Energy and Buildings, Vol. 133, pp. 335-344, 2016.
Luo J., Zhao H., Gui S., Xiang W., Rohn J. and Blum P., Thermo-economic analysis of four different types of ground heat exchangers in energy piles. Applied Thermal Engineering, Vol. 108, pp. 11-19, 2016.
Mehrizi A. A., Porkhial S., Bezyan B. and Lotfizadeh H., Energy pile foundation simulation for different configurations of ground source heat exchanger. International Communications in Heat and Mass Transfer, Vol. 70, pp. 105-114, 2016.
Sutman M., Speranza G., Ferrari A., Larrey-Lassalle P. and Laloui L., Long-term performance and life cycle assessment of energy piles in three different climatic conditions. Renewable Energy, Vol. 146, pp. 1177-1191, 2020.
Zhao Q., Chen B., Tian M. and Liu F., Investigation on the thermal behavior of energy piles and borehole heat exchangers: A case study. Energy, Vol. 162, pp. 787-797, 2018.
Kong L.-p., Qiao L., Xiao Y.-y. and Li Q.-w., A study on heat transfer characteristics and pile group influence of enhanced heat transfer energy piles. Journal of Building Engineering, Vol. 24, pp. 100768, 2019.
Staffell I., Brett D., Brandon N. and Hawkes A., A review of domestic heat pumps. Energy Environ Sci, Vol. 5, pp. 9291–306, 2012.
Habibi M. and Hakkaki-Fard A., Long-term energy and exergy analysis of heat pumps with different types of ground and air heat exchangers. Int J Refrig, Vol. 100, pp. 414–33, 2019.
قاضیزاده احسائی ح.، بنی اسد عسکری ا. و عامری م.، بررسی ترمواکونومیک پمپ حرارتی منبع زمینی انبساط مستقیم دیاکسیدکربن با استفاده از منبسطکننده و مبادلهکنحرارتیداخلی. مجلۀ مهندسی مکانیک دانشگاه تبریز، د. 51، ش. 2، ص 159-168، 1400.
عالی، پور محمود ن. و زارع و.، تحلیل اگزرژی چرخه ی جدید پیشنهادی برای تولید توان از چاه هایزمین گرمایی سبلان . مجلۀ مهندسی مکانیک دانشگاه تبریز، د. 48، ش. 1، ص 251-260، 1397.
Bottarelli M., A preliminary testing of a flat panel ground heat exchanger. Int J Low- Carbon Technology, Vol. 8, pp. 80–7, 2013.
You T., Shi W., Wang B., Wu W. and Li X., A new ground-coupled heat pump system integrated with a multi-mode air-source heat compensator to eliminate thermal imbalance in cold regions. Energy Build, Vol. 107, pp. 103–12, 2015.
Kavanaugh S. P. and Rafferty K. D., Geothermal heating and cooling: design of ground-source heat pump systems. ASHRAE, 2014.
Zhaoa Sh., Chenb B. and Liub F., Study on the thermal performance of several types of energy pile ground heat exchangers: U-shaped, W-shaped and spiral-shaped. Energy and Buildings, Vol. 133, pp. 335–344, 2016.
Energy plus, weather data. https://energyplus.net/weather-location/asia_wmo_region_2/IRN//IRN_Bandar.Abass.408750_ITMY, 2019.
Hourly Analysis Program (HAP), www.commercial.carrier.com, 2019.
Pronzato L. and Müller WG., Design of computer experiments: space filling and beyond. Stat Comput, Vol. 22, pp. 681–701, 2012.
Alirahmi, S.M., M. Rostami, and A.H. Farajollahi, Multi-criteria design optimization and thermodynamic analysis of a novel multi-generation energy system for hydrogen, cooling, heating, power, and freshwater. International Journal of Hydrogen Energy, 45, Issue 30, pp. 15047-15062, 2020.
Lin Y. and Zhang HH., Component selection and smoothing in multivariate nonparametric regression. Ann Stat, Vol. 34, pp. 2272–2297, 2006.