[1] Bellos E, Tzivanidis C. Investigation of a booster secondary reflector for a parabolic trough solar collector. Solar Energy. 2019 Feb 1; 179:174-85.
[2] Zou B, Jiang Y, Yao Y, Yang H. Thermal performance improvement using unilateral spiral ribbed absorber tube for parabolic trough solar collector. Solar Energy. 2019 May 1; 183:371-85.
|
[3] Wang Y, Xu J, Liu Q, Chen Y, Liu H. Performance analysis of a parabolic trough solar collector using Al2O3/synthetic oil nanofluid. Applied Thermal Engineering. 2016 Aug 25; 107:469-78.
|
[4] Khakrah H, Shamloo A, Kazemzadeh Hannani S. Determination of parabolic trough solar collector efficiency using nanofluid: a comprehensive numerical study. Journal of Solar Energy Engineering. 2017 Oct 1;139(5).
|
[5] Tagle-Salazar PD, Nigam KD, Rivera-Solorio CI. Heat transfer model for thermal performance analysis of parabolic trough solar collectors using nanofluids. Renewable energy. 2018 Sep 1; 125:334-43.
|
[6] Dehghan, M., Daneshipour, M., & Valipour, M. S. (2018). Nanofluids and converging flow passages: a synergetic conjugate-heat-transfer enhancement of micro heat sinks. International Communications in Heat and Mass Transfer, 97, 72-77.
|
[7] Mashhadian, A., Heyhat, M. M., & Mahian, O. (2021). Improving environmental performance of a direct absorption parabolic trough collector by using hybrid nanofluids. Energy Conversion and Management, 244, 114450.
|
[8] Siavashi, M., Bozorg, M. V., & Toosi, M. H. (2021). A numerical analysis of the effects of nanofluid and porous media utilization on the performance of parabolic trough solar collectors. Sustainable Energy Technologies and Assessments, 45, 101179.
|
[9] Hong, K., Yang, Y., Rashidi, S., Guan, Y., & Xiong, Q. (2021). Numerical simulations of a Cu–water nanofluid-based parabolic-trough solar collector. Journal of Thermal Analysis and Calorimetry, 143(6), 4183-4195.
|
[10] Jafar KS, Sivaraman B. Performance characteristics of parabolic solar collector water heater system fitted with nail twisted tapes absorber. Journal of engineering science and technology. 2017 Mar 1;12(3):608-21.
|
[11] ANSYS® Academic research, release 2020, ANSYS FLUENT, Theory Guide, ANSYS, Inc.
|
[12] Kasaeian AB. Convection heat transfer modeling of Ag nanofluid using different viscosity theories. IIUM Engineering Journal. 2012 Apr 20;13(1).
|
[13] Khanafer K, Vafai K. A critical synthesis of thermophysical characteristics of nanofluids. International journal of heat and mass transfer. 2011 Sep 1;54(19-20):4410-28.
|
[14] Yu W, Choi SU. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Hamilton–Crosser model. Journal of Nanoparticle Research. 2004 Aug 1;6(4):355-61.
|
[15] Maxwell GC. A Treatise on Electricity and Magnetism, second ed., Clarendon Press, Oxford, UK, 1881.
|
[16] Batchelor GK. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. Journal of fluid mechanics. 1977 Nov;83(1):97-117.
|
[17] Bellos E, Tzivanidis C. Parametric investigation of nanofluids utilization in parabolic trough collectors. Thermal Science and Engineering Progress. 2017 Jun 1; 2:71-9.
|
[18] Çengel YA, Ghajar AJ. Heat and Mass Transfer: Fundamentals & Applications, fourth ed., McGraw-Hill, New York, 2011.
|
[19] Mwesigye A, Bello-Ochende T, Meyer JP. Heat transfer and entropy generation in a parabolic trough receiver with wall-detached twisted tape inserts. International Journal of Thermal Sciences. 2016 Jan 1; 99:238-57.
|
[20] Manglik RM, Bergles AE, Heat Transfer and Pressure Drop Correlations for Twisted-Tape Inserts in Isothermal Tubes: Part II—Transition and Turbulent Flows, Journal of Heat Transfer 115(4) (1993) 890-896.
|