مطالعه تجربی ضریب انبساط گرمایی در آلیاژهای سبک آلومینیوم و منیزیم با مقایسه نتایج دیلاتومتری و آزمون نیرو- صفر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی، دانشکده مهندسی مکانیک، دانشگاه سمنان، سمنان، ایران

2 دانشگاه سمنان

3 دانشجوی دکتری، دانشکده مهندسی مکانیک، دانشگاه سمنان، سمنان، ایران

4 دانش آموخته کارشناسی ارشد، دانشکده مهندسی مکانیک، دانشگاه سمنان، سمنان، ایران

چکیده

در این تحقیق، ضریب انبساط گرمایی دو آلیاژ سبک آلومینیوم A356 و منیزیم AZ91، بصورت تجربی با استفاده از آزمون دیلاتومتری و آزمون نیرو- صفر محاسبه شد. در آزمون نیرو- صفر، دمای نمونه در محدوده تعیین شده، بدون اعمال نیروی مکانیکی، با نرخ گرمایش و سرمایش 2 درجه سلسیوس بر ثانیه، تغییر کرده و منحنی کرنش حرارتی- دما رسم شد. مجددا چرخه فوق، با نرخ حرارتی 10 درجه سلسیوس بر ثانیه تکرار شده و اختلاف کرنش آن با نتایج چرخه قبل، به­عنوان یک ضریب تصحیح، برای آزمون اصلی، به کرنش حرارتی اضافه گردید. نتایج نشان داد که در نرخ  2 درجه سلسیوس بر ثانیه، نمودار کرنش حرارتی- دما، بصورت خطی و در نرخ 10 درجه سلسیوس بر ثانیه، رفتار ماده به شکل حلقه هیسترزیس و غیرخطی بود. درصد خطای نتایج آزمون­ دیلاتومتری برای نمونه آلومینیومی برابر 52/47 درصد و برای نمونه منیزیمی برابر 69/48 درصد و درصد خطای آزمون نیرو- صفر در نرخ 2 درجه سلسیوس بر ثانیه برای نمونه آلومینیومی برابر با 68/1 درصد و برای نمونه منیزیمی برابر با 73/4 درصد محاسبه گردید.

کلیدواژه‌ها

موضوعات


  • آزادی م.، ارائه مدل پیش­بینی عمر خستگی ترمومکانیکی آلیاژ آلومینیوم (A356) با پوشش حائل حرارتی، رساله دکتری، دانشگاه صنعتی شریف، ایران، 1392.
  • Grieb M.B., Christ H-J., Plege B., Thermomechanical fatigue of cast aluminium alloys for cylinder head applications - experimental characterization and life prediction, Procedia Engineering, Vol. 2, pp. 1767–1776, 2010. https://doi.org/10.1016/j.proeng.2010.03.190
  • Jeong C., High temperature mechanical properties of AlSiMg­(Cu) alloys for automotive cylinder heads, Materials Transactions, Vol. 54, No. 4, pp. 588-594, 2013. https://doi.org/10.2320/matertrans.M2012285
  • Abderrazak K., Bannour S., Mhiri H., Lepalec G., Autric M., Numerical and experimental study of molten pool formation during continuous laser welding of AZ91 magnesium alloy, Computational Materials Science, Vol. 44, No. 3, pp. 858-866, 2009. https://doi.org/10.1016/j.commatsci.2008.06.002
  • Cox J., Luong D. D., Shunmugasamy V. C., Gupta N., Iii O. M. S., Cho K., Dynamic and thermal properties of aluminum alloy A356/Silicon carbide hollow particle syntactic foams, Metals, Vol. 4, No. 47, pp. 530-548, 2014. https://doi.org/10.3390/met4040530
  • Azadi M., Safarloo S., Loghman F., Microstructural and thermal properties of piston aluminum alloy reinforced by nano-particles, AIP Conference Proceedings 1920, 020027, 2018. https://doi.org/10.1063/1.5018959
  • Choi S. W., Cho H. S., Kumai S., Influence of precipitation on the coefficient of thermal expansion of Al-Si-Mg-Cu-(Ti) alloys, Journal of Alloys and Compounds, Vol. 655, pp. 6-10, 2016. https://doi.org/10.1016/j.jallcom.2015.09.207
  • Trinh P.V., Luan N.V., Phuong D.D., Minh P.N., Weibel A., Mesguich D., Laurent C., Microstructure, microhardness and thermal expansion of CNT/Al composites prepared by flake powder metallurgy, Composites Part A: Applied Science and Manufacturing, Vol. 105, pp. 126-137, 2017. https://doi.org/10.1016/j.compositesa.2017.11.022
  • Taufik R.S., Sulaiman S., Thermal expansion model for cast aluminum silicon carbide, Procedia Engineering, Vol. 68, pp. 392-398, 2013. https://doi.org/10.1016/j.proeng.2013.12.197
  • Ji H., Yuan L., Shan D., Effect of microstructure on thermal expansion coefficient of 7A09 aluminum alloy, Journal of Materials Science and Technology, Vol. 27, No. 9, pp. 797-801, 2011. https://doi.org/10.1016/S1005-0302(11)60145-X
  • Mohammadi Esfarjani S., Salehi M., Damage identification in aluminum T3-2024 alloy via cross correlation functions, The 15th International Conference of Iranian Aerospace, March 1-3, Tehran, Iran, 2016. (In Persian) http://research.iaun.ac.ir/pd/msalehi/pdfs/PaperC_8626.pdf
  • Mohammadi Esfarjani S., Salehi M., Detection of metallic impurities in alloys using the IPV and AMV methods, Romanian Journal of Acoustics and Vibration, Vol. XIII, No. 2, pp. 131-137, 2016. http://sra.ro/Arhiva/2016/nr2/Paper_11_page131-137.pdf
  • Mohammadi Esfarjani S., Evaluation of effect changing temperature on lamb-wave based structural health monitoring, Journal of Mechanical and Energy Engineering, Vol. 3(43), No.4, pp. 329-336, 2020. https://doi.org/10.30464/jmee.2019.3.4.329
  • ذوالفقاری م.، بررسی اثر افزودن ذرات نانو بر عمر خستگی پرچرخه خمشی در آلیاژ آلومینیوم پیستون موتور، پایان­نامه کارشناسی ارشد، دانشگاه سمنان، ایران، 1397.
  • Azadi M., Rezanezhad S., Zolfaghari M., Azadi M., Effects of various ageing heat treatments on microstructural features and hardness of piston aluminum alloy, International Journal of Engineering: Basics, Applications and Aspects, Vol. 32, No.1, pp.  92-98, 2019.
  • Azadi M., Bahmanabadi H., Gruen F., Winter G., Evaluation of tensile and low-cycle fatigue properties at elevated temperatures in piston aluminum-silicon alloys with and without nano-clay-particles and heat treatment, Materials Science and Engineering: A, Vol. 788,139497, 2020. https://doi.org/10.1016/j.msea.2020.139497
  • Zolfaghari, M., Azadi, M. Azadi, M. Characterization of high-cycle bending fatigue behaviors for piston aluminum matrix SiO2 nano-composites in comparison with aluminum-silicon alloys, International Journal of Metalcasting, Vol.  15, pp.  152–168, 2021. https://doi.org/10.1007/s40962-020-00437-y
  • Ceschini L., Morri A., Morri A., Pivetti G., Predictive equations of the tensile properties based on alloy hardness and microstructure for an A356 gravity die cast cylinder head, Materials and Design, Vol. 32, No. 3, pp. 1367-1375, 2011. https://doi.org/10.1016/j.matdes.2010.09.014
  • Azadi M., Cyclic thermo-mechanical stress, strain and continuum damage behaviors in light alloys during fatigue lifetime considering heat treatment effect, International Journal of Fatigue, Vol. 99, No. 2, pp. 303-314, 2017. https://doi.org/10.1016/j.ijfatigue.2016.12.001
  • Beer F.P., Johnston E., DeWolf J.T., Mazurek D.F., Mechanics of Materials, McGraw Hill Education, Seventh Edition, 2006.
  • Hahner P., Affeldt E., Beck T., Klingelhoffer H., Loveday M., Rinaldi C., Validated Code-of-Practice for Thermo-Mechanical Fatigue Testing, European Commission Joint Research Center, 2006.
  • Azadi M., Farrahi G.H., Winter G., Eichlseder W., Fatigue lifetime of AZ91 magnesium alloy subjected to cyclic thermal and mechanical loadings, Materials and Design, Vol. 53, pp. 639-644, 2014. https://doi.org/10.1016/j.matdes.2013.07.075
  • Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM International, Vol. 2, 1992. https://doi.org/10.31399/asm.hb.v02.9781627081627
  • Kinast J., Grabowski K., Rohloff R.R., Risse S., Tunnermann A., Dimensional stability of metal optics on nickel plated AlSi40, Proceedings, Vol. 10563, International Conference on Space Optics, 105635W, 2017. https://doi.org/10.1117/12.2304139
  • طیبی م.، شریفی ح.، غیور ح.، رفتار انبساط حرارتی کامپوزیت‌های Al-4%Cu/SiC ساخته شده به روش متالورژی پودر، فرآیندهای نوین در مهندسی مواد، دوره 9، شماره 1، صفحه 179-191، 1394.
  • Natesan E., Eriksson S., Ahlstrom J., Persson C., Effect of temperature on deformation and fatigue behavior of A356-T7 cast aluminum alloys used in high specific power IC engine cylinder heads, Materials, Vol. 13, No. 5, p. 1202, 2020. https://doi.org/10.3390/ma13051202