کاربرد طرح عددی با دقت مرتبه بالا براساس خانواده ذاتا غیرنوسانی با ضرایب وزنی در الگوریتم فشار-مبنا برای تسخیر ناپیوستگی‌ها‌

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه هوافضا، دانشکده مهندسی، دانشگاه فردوسی، مشهد، ایران

2 استاد، گروه مهندسی هوافضا، دانشکده مهندسی، دانشگاه فردوسی، مشهد، ایران

چکیده

در این تحقیق طرح‌ عددی با دقت مرتبه بالا بر مبنای خانواده وزنی ذاتا غیرنوسانی برای جلوگیری از نوسانات غیرفیزیکی بر مبنای حل کننده ریمان برای جریان‌های تراکم پذیر پایا و ناپایا یک بعدی و دو بعدی در یک الگوریتم فشار مبنا توسعه داده شده است. روش حل بر مبنای حجم محدود است که از حل کننده ضمنی و یک شبکه منظم که متغیرها در یک مکان ذخیره می‌شوند استفاده شده است. محدودکنندگی به‌وسیله یک طرح عددی با دقت مرتبه بالای ذاتا بدون نوسان اعمال شده است. برای ارزیابی روش عددی از یک لوله ضربه که حاوی موج ضربه‌ای، ناپیوستگی تماسی و امواج انبساطی است، استفاده شده است و نتایج بدست آمده با نتایج تحلیلی و نتایج بر مبنای روش چگالی مبنا مقایسه شده است. روش توسعه داده شده برای پیکربندی لاکس در جریان غیر لزج دو بعدی ارزیابی شده است. علاوه برآن از این روش برای شبیه‌سازی جریان پایای دوبعدی در یک کانال حاوی برآمدگی استفاده شده است. نتایج نشان می‌دهد که روش توسعه داده شده قادر است به خوبی ناپیوستگی های فیزیکی و عددی را تسخیر کند.

کلیدواژه‌ها

موضوعات


  • Harten A, Osher S. Uniformly high-order accurate nonoscillatory schemes. SIAM Journal on Numerical Analysis, Vol. 24(2), pp. 279-309, 1987.
  • Harten A, Osher S, Engquist B, Chakravarthy SR. Some results on uniformly high-order accurate essentially nonoscillatory schemes. Applied Numerical Mathematics, Vol. 2(3-5), pp. 347-77, 1986.
  • Harten A, Engquist B, Osher S, Chakravarthy SR. Uniformly high order accurate essentially non-oscillatory schemes, III. InUpwind and high-resolution schemes (pp. 218-290). Springer, Berlin, Heidelberg, 1987.
  • Harten A. ENO schemes with subcell resolution. Journal of Computational Physics, Vol. 83(1), pp. 148-84, 1989.
  • Liu XD, Osher S, Chan T. Weighted essentially non-oscillatory schemes. Journal of computational physics, Vol. 115(1), pp. 200-12, 1994.
  • Jiang GS. Efficient implementation of weighted ENO schemes. Department of Mathematics, University of California, Los Angeles; 1995.
  • Chai D, Xi G, Sun Z, Wang Z, Huang Z. An efficient modified WENO scheme based on the identification of inflection points. Computers & Fluids. Vol. 170, pp. 176-86, 2018.
  • Liu S, Shen Y, Peng J, Zhang J. Two-step weighting method for constructing fourth-order hybrid central WENO scheme. Computers & Fluids. Vol. 207, p. 104590, 2020.
  • Rathan S, Gande NR, Bhise AA. Simple smoothness indicator WENO-Z scheme for hyperbolic conservation laws. Applied Numerical Mathematics. Vol. 157, pp. 255-75, 2020.
  • Wang Y, Du Y, Zhao K, Yuan L. A new 6th-order WENO scheme with modified stencils. Computers & Fluids. Vol. 208, p.104625, 2020.
  • Zhu Y, Hu X. An L2-norm regularized incremental-stencil WENO scheme for compressible flows. Computers & Fluids. Vol. 213, p.104721, 2020.
  • Wu C, Wu L, Li H, Zhang S. Very high order WENO schemes using efficient smoothness indicators. Journal of Computational Physics. Vol. 432, p. 110158, 2021.
  • Li P, Gao Z. Simple high order well-balanced finite difference WENO schemes for the Euler equations under gravitational fields. Journal of Computational Physics. Vol. 437, p.110341, 2021.
  • Pan L, Cao G, Xu K. Fourth-order gas-kinetic scheme for turbulence simulation with multi-dimensional WENO reconstruction. Computers & Fluids. Vol. 221, p.104927, 2021.
  • Hu F. High-order mapped WENO methods with improved efficiency. Computers & Fluids. Vol. 219, p. 104874, 2021.
  • Luo X, Wu SP. Improvement of the WENO-Z+ scheme. Computers & Fluids. Vol. 218, p.104855, 2021.
  • Wang PP, Zhang AM, Meng ZF, Ming FR, Fang XL. A new type of WENO scheme in SPH for compressible flows with discontinuities. Computer Methods in Applied Mechanics and Engineering. 381: p. 113770, 2021.
  • Chorin AJ. A numerical method for solving incompressible viscous flow problems. Journal of computational physics. , Vol. 2(1), pp. 12-26, 1967.
  • Hejranfar K, Parseh K. Preconditioned characteristic boundary conditions based on artificial compressibility method for solution of incompressible flows. Journal of Computational Physics, Vol. 345, pp. 543-64, 2017.
  • Djavareshkian M. A new NVD scheme in pressure-based finite-volume methods. In14th Australasian Fluid Mechanics conference, Adelaide University, Adelaide, Australia, pp. 339-342, 2001.
  • Djavareshkian MH, Reza-Zadeh S. Application of normalized flux in pressure-based algorithm. Computers & fluids, Vol. 36(7), pp. 1224-34, 2007.
  • Issa RI, Javareshkian MH. Pressure-based compressible calculation method utilizing total variation diminishing schemes. AIAA journal, Vol. 36(9), pp. 1652-7, 1998.
  • Shyy W, Chen MH, Sun CS. Pressure-based multigrid algorithm for flow at all speeds. AIAA journal, Vol. 30(11), pp. 2660-9.
  • Demirdžić I, Lilek Ž, Perić M. A collocated finite volume method for predicting flows at all speeds. International Journal for Numerical Methods in Fluids, Vol. 16(12), pp. 1029-50, 1993.
  • Lien FS, Leschziner MA. A pressure-velocity solution strategy for compressible flow and its application to shock/boundary-layer interaction using second-moment turbulence closure.
  • Lien FS, Leschziner MA. A general non-orthogonal collocated finite volume algorithm for turbulent flow at all speeds incorporating second-moment turbulence-transport closure, Part 1: Computational implementation. Computer methods in applied mechanics and engineering, Vol. 114(1-2), pp. 123-48, 1994.
  • Politis ES, Giannakoglou KC. A PRESSURE‐BASED ALGORITHM FOR HIGH‐SPEED TURBOMACHINERY FLOWS. International journal for numerical methods in fluids, Vol. 25(1), pp. 63-80, 1997.
  • Chen KH, Pletcher RH. Primitive variable, strongly implicit calculation procedure for viscous flows at all speeds. AIAA journal, Vol. 29(8), pp. 1241-9. 1991.
  • Karimian SM, Schneider GE. Pressure-based control-volume finite element method for flow at all speeds. AIAA journal, Vol. 33(9), pp. 1611-8, 1995.
  • Karimian SM, Schneider GE. Pressure-based computational method for compressible and incompressible flows. Journal of thermophysics and heat transfer, Vol. 8(2), pp. 267-74, 1994.
  • Darbandi M, Schneider GE. Momentum variable procedure for solving compressible and incompressible flows. AIAA journal. Dec;35(12), pp. 1801-5, 1997.
  • Van Doormaal JP, Raithby GD, McDonald BH. The segregated approach to predicting viscous compressible fluid flows.
  • Bijl H, Wesseling P. A unified method for computing incompressible and compressible flows in boundary-fitted coordinates. Journal of Computational Physics, Vol. 141(2), pp. 153-73, 1998.
  • Moukalled F, Darwish M. A high-resolution pressure-based algorithm for fluid flow at all speeds. Journal of Computational Physics, Vol. 168(1), pp. 101-30, 2001.
  • Darbandi M, Schneider GE. Analogy-based method for solving compressible and incompressible flows. Journal of Thermophysics and heat Transfer, Vol. 12(2), pp. 239-47, 1998.
  • Darbandi M, Schneider GE. Performance of an analogy-based all-speed procedure without any explicit damping. Computational mechanics, Vol. 26(5), pp. 459-69, 2000.
  • van der Heul DR, Vuik C, Wesseling P. A conservative pressure-correction method for flow at all speeds. Computers & Fluids, Vol. 32(8), pp. 1113-32, 2003.
  • Cubero A, Fueyo N. Preconditioning based on a partially implicit implementation of momentum interpolation for coupled solvers. Numerical Heat Transfer, Part B: Fundamentals, Vol. 53(6), pp. 510-35, 2008.
  • Darwish M, Sraj I, Moukalled F. A coupled finite volume solver for the solution of incompressible flows on unstructured grids. Journal of Computational Physics, Vol. 228(1), pp. 180-201, 2009.
  • Chen ZJ, Przekwas AJ. A coupled pressure-based computational method for incompressible/compressible flows. Journal of Computational Physics, Vol. 229(24), pp. 9150-65, 2010.
  • Darwish M, Moukalled F. A fully coupled Navier-Stokes solver for fluid flow at all speeds. Numerical Heat Transfer, Part B: Fundamentals, Vol. 65(5), pp. 410-44, 2014.
  • Xiao CN, Denner F, van Wachem BG. Fully-coupled pressure-based finite-volume framework for the simulation of fluid flows at all speeds in complex geometries. Journal of Computational Physics, Vol. 346, pp. 91-130, 2017.
  • Denner F, Xiao CN, van Wachem BG. Pressure-based algorithm for compressible interfacial flows with acoustically-conservative interface discretisation. Journal of Computational Physics, Vol. 367, pp. 192-234, 2018.
  • Lax PD, Liu XD. Solution of two-dimensional Riemann problems of gas dynamics by positive schemes. SIAM Journal on Scientific Computing, Vol. 19(2), pp. 319-40, 1998.
  • Darbandi M, Mokarizadeh V. A modified pressure-based algorithm to solve flow fields with shock and expansion waves. Numerical Heat Transfer, Part B: Fundamentals, Vol. 46(5), pp. 497-504, 2004.
  • Xiao Ch, Denner F, Wachem B. Fully-coupled pressure-based finite-volume framework for the simulation of fluid flows at all speeds in complex geometries, Journal of Computational Physics, Vol. 346, pp. 91–130,
  • San O, Kara K. Numerical assessments of high-order accurate shock capturing schemes: Kelvin–Helmholtz type vortical structures in high-resolutions. Computers & Fluids, Vol. 89, pp. 254-76, 2014.