بررسی عددی نحوه تشکیل قطره در الگوهای مختلف جریان دوفازی مایع-مایع در میکروکانال‌های متمرکزکن جریان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده مهندسی مکانیک، پردیس فنی، دانشگاه تهران، تهران، ایران

2 استاد، ، دانشکده مهندسی مکانیک، پردیس فنی، دانشگاه تهران، تهران، ایران

3 استاد، دانشکده مهندسی مکانیک، پردیس فنی، دانشگاه تهران، تهران، ایران

4 دانشجوی دکتری، ، دانشکده مهندسی مکانیک، پردیس فنی، دانشگاه تهران، تهران، ایران

چکیده

در این مطالعه، به صورت عددی به بررسی نحوه تشکیل هر یک از الگوهای جریان دوفازی در جریان‌های دوفاز مایع-مایع در میکروکانال‌های متمرکزکن جریان پرداخته می‌شود. در سیستم‌های دوفاز مایع-مایع، به دلیل تعامل دوفاز غیرقابل امتزاج، الگوهای مختلف جریان اعم از فشرده‌شده، قطره‌ای، جت و رشته‌ای مشاهده می‌شود. بررسی علل تشکیل هر یک از این الگوها برای کابردهای مختلف پزشکی و صنعتی می‌تواند بسیار حائز اهمیت باشد. در این میان، الگوی قطره‌ای به دلیل خواص موردنیاز اعم از یکنواختی ابعادی بالا برای کاربردهای انتقال دارو، بررسی اثر دارو، سنتز، واکنش و اختلاط بسیار مناسب می‌باشد. از سوی دیگر قطره‌های تولید شده در الگوی جت از نظر ابعادی معمولا نامنظم می‌باشند. عوامل متعددی ازجمله، ابعاد میکروکانال‌های فاز گسسته و فاز پیوسته و میکروکانال اصلی، دبی‌های جریان، خواص فیزیکی فازها (لزجت، چگالی و کشش سطحی) و خواص سطح بر روی نحوه تشکیل قطره تأثیر می‌گذارند. پس از بررسی این عوامل در الگوهای مختلف جریان، در ادامه نیز نمودارهای فشار در ورودی میکروکانال‌ها در هر یک از الگوهای فوق بررسی شده است.

کلیدواژه‌ها

موضوعات


[1]   Stone H. A., Stroock A. D., and Ajdari A., Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech., Vol. 36, No. 1, PP. 381–411, 2004.
[2]   Whitesides G. M., The origins and the future of microfluidics. Nature, Vol. 442, No. July, 2006.
[3]   Manz A., Harrison D. J., Verpoorte E. M. J., Fettinger J. C., Paulus A., Lüdi H., and Widmer H. M., Planar chips technology for miniaturization and integration of separation techniques into monitoring systems. Capillary electrophoresis on a chip. J. Chromatogr. A, Vol. 593, No. 1–2, PP. 253–258, 1992.
[4]   Gu H., Duits M. H. G., and Mugele F., Droplets formation and merging in two-phase flow microfluidics. Int. J. Mol. Sci., Vol. 12, No. 4, PP. 2572–2597, 2011.
[5]   Taylor G., Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. London. Ser. A. Math. Phys. Sci., Vol. 219, No. 1137, PP. 186–203, 1953.
[6]   Aris R., On the dispersion of a solute in a fluid flowing through a tube. Proc. R. Soc. London. Ser. A. Math. Phys. Sci., Vol. 235, No. 1200, PP. 67–77, 1956.
[7]   Fu T., Ma Y., Funfschilling D., and Li H. Z., Bubble formation and breakup mechanism in a microfluidic flow-focusing device. Chem. Eng. Sci., Vol. 64, No. 10, PP. 2392–2400, 2009.
[8]   Tan J., Li S. W., Wang K., and Luo G. S., Gas-liquid flow in T-junction microfluidic devices with a new perpendicular rupturing flow route. Chem. Eng. J., Vol. 146, No. 3, PP. 428–433, 2009.
[9]   Van Der Graaf S., Steegmans M. L. J., Van Der Sman R. G. M., Schroën C. G. P. H., and Boom R. M., Droplet formation in a T-shaped microchannel junction: A model system for membrane emulsification. Colloids Surfaces A Physicochem. Eng. Asp., Vol. 266, No. 1–3, PP. 106–116, 2005.
[10]              Garstecki P., Fuerstman M. J., Stone H. A., and Whitesides G. M., Formation of droplets and bubbles in a microfluidic T-junction - Scaling and mechanism of break-up. Lab Chip, Vol. 6, No. 3, PP. 437–446, 2006.
[11]              Christopher G. F. and Anna S. L., Microfluidic methods for generating continuous droplet streams, J. Phys. D. Appl. Phys., Vol. 40, No. 19, 2007.
[12]              The S. Y., Lin R., Hung L. H., and Lee A. P., Droplet microfluidics. Lab Chip, Vol. 8, No. 2, PP. 198–220, 2008.
[13]              Baroud C. N., Gallaire F., and Dangla R., Dynamics of microfluidic droplets. Lab Chip, Vol. 10, No. 16, PP. 2032–2045, 2010.
[14]              Zhou C., Yue P., and Feng J. J., Formation of simple and compound drops in microfluidic devices. Phys. Fluids, Vol. 18, No. 9, 2006.
[15]              Fu T., Wu Y., Ma Y., and Li H. Z., Droplet formation and breakup dynamics in microfluidic flow-focusing devices: From dripping to jetting. Chem. Eng. Sci., Vol. 84, PP. 207–217, 2012.
[16]              Ward T., Faivre M., Abkarian M., and Stone H. A., Microfluidic flow focusing Drop size and scaling in pressure versus flow‐rate‐driven pumping. Electrophoresis, Vol. 26, No. 19, PP. 3716–3724, 2005.
[17]              Brackbill J. U., Kothe D. B., and Zemach C., A continuum method for modeling surface tension. J. Comput. Phys., Vol. 100, No. 2, PP. 335–354, 1992.
[18]              Chen X., Glawdel T., Cui N., and Ren C. L., Model of droplet generation in flow focusing generators operating in the squeezing regime. Microfluid. Nanofluidics, Vol. 18, No. 5–6, PP. 1341–1353, 2015.