[1] Schijndel-de Nooij M., et al., Definition of necessary vehicle and infrastructure systems for automated driving, European Commission, Tech. Rep. 2010/0064, 2011.
[2] Pohl J., Birk W., and Westervall L., A driver-distraction-based lane keeping assistance system, J. Systems and Control Engineering, vol. 221, pp. 541–552, 2007.
[3] Kesting A., Treiber M., Schönhof M., Helbing D. Extending adaptive cruise control to adaptive driving strategies, Transportation Research Record, Vol. 2000 (1), pp. 16-24, 2007.
[4] کرمی محمدی ن.، آزادی ش.، و جزایری ع.، الگوریتم کنترل خودرو برای سامانه کروز کنترل تطبیقی در ترافیک شهری، مجله امیرکبیر( مهندسی مکانیک)، د. 44، ش. 2، ص 91-83، 1391
[5] Gao HB, Cheng B, Wang JQ, et al., Object classification using CNN-based fusion of vision and lidar in autonomous vehicle environment. IEEE Trans Ind Inform, 14(9), pp. 4224–4231, 2018.
[6] Zhang XY, Gao HB, Xue C, et al., Real-time vehicle detection and tracking using improved histogram of gradient features and Kalman filters. Int J Adv Robot Syst, Vol. 15(1), 2018.
[7] Gao HB, Shi GY, Xie GT, et al., Car-following method based on inverse reinforcement learning for autonomous vehicle decision-making. Int J Adv Robot Syst, Vol 15(6), 2018.
[8] Schwarting W, Alonso-Mora J, and Rus D. Planning and decision-making for autonomous vehicles. Annu Rev Control Robot Auton Syst, Vol. 1, pp. 187–210, 2018.
[9] Li L, Lu YS, Wang RR, et al. A three-dimensional dynamic control framework of vehicle lateral stability and rollover prevention via active braking with MPC. IEEE Trans Ind Electron, Vol. 64(4), pp. 3389–3401, 2018.
[10] Guo HY, Liu J, Cao DP, et al. Dual-envelop-oriented moving horizon path tracking control for fully automated vehicles. Mechatronics, Vol. 50, pp. 422–433, 2018.
[11] Zong W., Zhang C., Wang Z., Zhu J. and Chen Q., "Architecture Design and Implementation of an Autonomous Vehicle," in IEEE Access, vol. 6, pp. 21956-21970, 2018.
[12] Katrakazas C., Quddus M., Chen W-H., Deka L., Real-time motion planning methods for autonomous on-road driving: State-of-the-art and future research directions, Transportation Research Part C: Emerging Technologies, vol. 60, pp. 416-442, 2015.
[13] Li X. H., Sun Z. P., Cao D. P., Liu D. X., and He H. G., Development of a new integrated local trajectory planning and tracking control framework for autonomous ground vehicles, Mechanical Systems and Signal Processing, vol. 87, pp. 118-137, 2017.
[14] Zhu M., Chen H. Y., and Xiong G. M., “A model predictive speed tracking control approach for autonomous ground vehicles, Mechanical Systems and Signal Processing, Vol. 87, pp. 138-152, 2017.
[15] Leng Z. and Minor M. A., Curvature-based ground vehicle control of trailer path following considering sideslip and limited steering actuation, IEEE Trans. on Intelligent Transportation Systems, vol. 18, no. 2, pp. 332-348, 2017.
[16] Hu C., Jing H., Wang R. R., Yan F. J., and Chadli M., Robust H ∞ output-feedback control for path following of autonomous ground vehicles, Mechanical Systems and Signal Processing, Vol. 70, pp. 414-427, 2016.
[17] Leng Z. and Minor M. A., Curvature-based ground vehicle control of trailer path following considering sideslip and limited steering actuation, IEEE Trans. on Intelligent Transportation Systems, Vol. 18, no. 2, pp. 332-348, 2017.
[18] Hwang C. L., Yang C. C., and Hung J. Y., Path tracking of an automatic ground vehicle with different payloads by hierarchical improved fuzzy dynamic sliding-mode control, IEEE Trans. on Fuzzy Systems, Vol. 26, no. 2, pp. 899-914, 2018.
[19] Xiao H. Z., Li Z. J., Yang C. G., Yuan W., and Wang L. Y., RGB-D sensor-based visual target detection and tracking for an intelligent wheelchair robot in indoors environments, International Journal of Control, Automation and Systems, Vol. 13, no. 3, pp. 521-529, 2015.
[20] Li Z. J., Xiao H. Z., Yang C. G., and Zhao Y. W., Model predictive control of nonholonomic chained systems using general projection neural networks optimization, IEEE Trans. on Systems, Man, and Cybernetics and Systems, Vol. 45, no. 10, pp. 1313-1321, 2015.
[21] Li Z. J., Yang C. G., Su C. Y., Deng J., and Zhang W. D., Vision-based model predictive control for steering of a nonholonomic mobile robot, IEEE Trans. on Control Systems Technology, vol. 24, no. 2, pp. 553-564, 2016.
[22] Pang Z. H., Liu G. P., Zhou D. H., and Sun D. H., Design and performance analysis of networked predictive control systems based on input-output difference equation model, International Journal of Control, Automation and Systems, Vol. 15, no. 1, pp. 416-426, 2017.
[23] محمد رضا زاده ش.، میرزایی م. و میرزایی نژاد ح.، ارائه مدل مرجع جدید برای پایداری و فرمانپذیری خودرو جهت ردیابی توسط
کنترل کننده غیرخطی زاویه فرمان چرخهای عقب. مجلۀ مهندسی مکانیک دانشگاه تبریز، د. 48، ش. 3، ص 271-280، 1397.
[24] کاظمیان, امیر حسین, فولادی, مجید, دریجانی, حسین. بررسی اثر درجات آزادی سیستم تعلیق در کنترل غیرخطی پایداری و چرخش حول محور طولی خودرو با استفاده از کنترل کننده مد لغزشی مجلۀ مهندسی مکانیک دانشگاه تبریز، د. 48، ش. 2، ص 229-239، 1397.
[25] Yue M., An C. and Li Z., Constrained Adaptive Robust Trajectory Tracking for WIP Vehicles Using Model Predictive Control and Extended State Observer, in IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 48, no. 5, pp. 733-742, May 2018.
[28] Zhang J. H., Sun W. C., and Feng Z. G., Vehicle Yaw Stability Control via H infinity gain scheduling, Mechanical systems and signal processing, Vol.106, pp. 62-75, 2018.
[29] Hu C., Wang R. R., Yan F. J., and Chen N., Should the desired heading in path following of autonomous vehicles be the tangent direction of the desired path? IEEE Trans. on Intelligent Transportation Systems, Vol. 16, no. 6, pp. 3084-3094, 2015.
[30] خاکی صدیق ع.، باقری پ.، بررسی روش های تنظیم پارامترهای کنترل کننده های پیش بین و راهکارهای نوین تنظیم، مجله کنترل، جلد8، ش. 3، ص 88-69، 1393.