مدل‌سازی عددی لوله گرمایی به منظور استفاده در خنک‌کاری پیل سوختی غشاء پلیمری

نوع مقاله : پژوهشی کامل

نویسندگان

1 دانشجوی دکتری، دانشکده فنی و مهندسی، دانشگاه اصفهان، اصفهان، ایران

2 دانشیار، گروه مهندسی مکانیک، دانشگاه اصفهان، اصفهان، ایران

3 دانشیار، پژوهشکده مواد و انرژی، اصفهان، ایران،

4 دکتری، دانشکده فنی و مهندسی، اصفهان، ایران

چکیده

مدیریت گرما در پیل جهت نگه داشتن دمای آن در یک بازه دمایی محدود و مناسب (60-80 درجه سلسیوس) و تلاش جهت یکنواختی توزیع دما در پیل ضروری است؛ زیرا کنترل دمایی پیل سوختی، تأثیر زیادی بر کارایی، بازده و عمر مفید پیل سوختی غشاء پلیمری دارد. یکی از روش های خنک کاری پیل استفاده از مکانیزم تغییر فاز برای کنترل دمایی غیر فعال پیل است. لوله گرمایی، با استفاده از این مکانیزم امکان کنترل یکنواخت دمایی پیل را بدون استفاده از توان پمپ و به صورت غیر فعال فراهم می کند. در این مقاله یک لوله گرمایی برای خنک کاری پیل با توان پایین پیل 200 واتی پیشنهاد شده است و به مدل­سازی دو فازی و گذرا لوله گرمایی با سیال کاری آب؛ پرداخته شده است. برای بررسی عملکرد لوله گرمایی، مدل حجم سیال و مدل محیط متخلخل استفاده شده است. بررسی همزمان فرایندهای تبخیر و میعان در لوله گرمایی، با نوشتن یک کد کامپیوتری و اضافه کردن آن به نرم افزار Fluent انجام شده است. تطابق خوبی بین داده­های تجربی و مدل عددی حاضر وجود دارد و مشاهده می­شود که مدل حجم سیال می­تواند مدل مناسبی برای پدیده­های پیچیده در لوله گرمایی باشد. نتایج نشان می­دهند که به کمک خنک­کاری با لوله گرمایی، دمای بخش تبخیرکن که همان دمای صفحات دو قطبی پیل است، 69 درجه سلسیوس است که این مقدار در محدوده مناسب عملکرد پیل قرار دارد. در واقع لوله گرمایی قادر به دفع مناسب گرمای پیل بوده است؛ ضمن این که توزیع دما داخل پیل نیز نسبتاً یکنواخت است. مقادیر پایین محاسبه شده برای مقاومت حرارتی لوله گرمایی، نشان دهنده بهبود عملکرد سیستم خنک­کاری پیل سوختی است.

کلیدواژه‌ها

موضوعات


[1]          Ramezanizadeh M., Alhuyi Nazari M., Ahmadi M. H., and Chen L., A review on the approaches applied for cooling fuel cells. International Journal of Heat and Mass Transfer, VOL 139, pp. 517–525, 2019.
[2]          Daud W. R. W, Rosli R. E., Majlan E. H., Hamid S. A. A., Mohamed R., and Husaini T., PEM fuel cell system control: A review. Renewable Energy, VOL 113, pp. 620–638, 2017.
[3]          Zhang G. and Kandlikar S. G., A critical review of cooling techniques in proton exchange membrane fuel cell stacks. International Journal of Hydrogen Energy, VOL 37, NO 3, pp. 2412–2429, 2012.
[4]          Zohuri B., Heat Pipe Design and Technology. Springer, Cham, 2011.
[5]          Issacci F., Heat Pipe Vapor Dynamics. University of California, 1990.
[6]          Faghri A., Heat pipe: review, opportunities and challenges. Frontiers in Heat Pipes, VOL 5, NO 1, 2014.
[7]          Reji A. K., Kumaresan G., Sarathi A., Saiganesh G. P., Suriya Kumar R., and Shelton M., Performance analysis of thermosyphon heat pipe using aluminum oxide nanofluid under various angles of inclination. Mater. Today Procceeding., 2020.
[8]          Li S. F. and hua Liu Z., Parametric study of rotating heat pipe performance: A review, Renewable and. Sustainable. Energy Reviews., VOL 117, 2020.
[9]          Tiari S., Qiu S., and Mahdavi M., Numerical study of finned heat pipe-assisted thermal energy storage system with high temperature phase change material, Energy Conversion and. Management., VOL 89, pp. 833–842, 2015.
[10]        Liu F., Lan F., and Chen J., Dynamic thermal characteristics of heat pipe via segmented thermal resistance model for electric vehicle battery cooling. Journal of. Power Sources, VOL 321, pp. 57–70, 2016.
[11]        Burlacu A. Sosoi G. Vizitiu R. Ș. Bărbuță M. Lăzărescu C. D. Ciocan V. and Șerbănoiu A. A., Energy efficient heat pipe heat exchanger for waste heat recovery in buildings.  Procedia Manufacturing., VOL 22, pp. 714–721, 2018.
[12]        Barzi Y. M. and Assadi M., Evaluation of a thermosyphon heat pipe operation and application in a waste heat recovery system, Experimental. Heat Transfer., VOL 28, NO 5, pp. 493–510, 2015.
[13]        Shukla K. N., Heat Pipe for Aerospace Applications — An Overview, Journal of Electronics Cooling and Thermal Control, VOL 5, pp. 1–14, 2015.
[14]        Alizadeh H., Ghasempour R., Shafii M. B., Ahmadi M. H., Yan W. M., and  Nazari M. A., Numerical simulation of PV cooling by using single turn pulsating heat pipe. International Journal of Heat and Mass Transfer., VOL 127, pp. 203–208, 2018.
[15]        Oro M. V. and Bazzo E, Flat heat pipes for potential application in fuel cell cooling. Applied. Thermal. Engineering., VOL 90, NO 6, pp. 848–857, 2015.
[16]        Faghri A and Guo Z, Integration of heat pipe into fuel cell technology. Heat Transfer. Engineering., VOL 29, NO 3, pp. 232–238, 2008.
[17]        Shirzadi N., Roshandel R., and Shafii M. B., Integration of Miniature Heat Pipes into a Proton Exchange Membrane Fuel Cell for Cooling Applications. Heat Transfer. Engineering., VOL 38, NO 18, pp. 1595–1605, 2017.
[18]        Clement J. and Wang X., Experimental investigation of pulsating heat pipe performance with regard to fuel cell cooling application. Applied. Thermal. Engineering., VOL 50, pp. 268–274, 2013.
[19]        Silva A. P., Galante R. M., Pelizza P. R., and Bazzo E., A combined capillary cooling system for fuel cells, Applied. Thermal. Engineering., VOL 41, pp. 104–110, 2012.
[20]        Rullière R. et al., Experimental study of two-phase heat spreaders for PEMFC cooling applications. 14th International Heat Pipe Conference (14th IHPC), Florianópolis, Brazil, 2007.
[21]        Burke A., Jakupca L., and Colozza A., Development of Passive Fuel Cell Thermal Management Technology. in Seventh International Energy Conversion Engineering Conference (IECEC), 2010.
[22]        Zeng H., Wang Y., Shi Y., Cai N., and Yuan D., Highly thermal integrated heat pipe-solid oxide fuel cell. Applied. Energy, VOL 216, NO. 2017, pp. 613–619, 2018.
[23]        Dillig M., Plankenbühler T., and Karl J., Thermal effects of planar high temperature heat pipes in solid oxide cell stacks operated with internal methane reforming. Journal of. Power Sources, VOL. 373, pp. 139–149, 2018.
[24]        Yue C., Zhang Q., Zhai Z., and Ling L., CFD simulation on the heat transfer and flow characteristics of a microchannel separate heat pipe under different filling ratios. Applied. Thermal. Engineering., VOL. 139, pp. 25–34, 2018.
[25]        ANSYS Fluent User ’ s Guide. 2013.
[26]        Pooyoo N., Kumar S., Charoensuk J., and Suksangpanomrung A., Numerical simulation of cylindrical heat pipe considering non-Darcian transport for liquid flow inside wick and mass flow rate at liquid–vapor interface. International Journal of Heat and Mass Transfer ,VOL. 70, pp. 965–978, 2014.
[27]        Li J. and Peterson G. P., 3D heat transfer analysis in a loop heat pipe evaporator with a fully saturated wick. International Journal of Heat and Mass Transfer. VOL 54, pp. 564–574, 2011.
[28]        Faghri A. and Buchko M., Experimental and Numerical Analysis of Low-Temperature Heat Pipes With Multiple Heat Sources. Journal. Heat Transfer, VOL. 113, 1991.