بررسی عددی پارامترهای تأثیرگذار بر جریان دوفازی جامد-مایع در میکروکانال همگرا-واگرا با استفاده از رهیافت اویلری- لاگرانژی

نوع مقاله : پژوهشی کامل

نویسندگان

1 استادیار، گروه مهندسی مکانیک و هوافضا، دانشگاه آزاد اسلامی واحد گرمسار، گرمسار، ایران

2 دکتری تخصصی، گروه مهندسی مکانیک، دانشگاه آزاد اسلامی واحد تهران غرب، تهران، ایران

چکیده

در این تحقیق شبیه سازی عددی سه بعدی بر مبنای رهیافت اویلری-لاگرانژی بر روی جریان دو فازی جامد-مایع در یک میکروکانال همگرا-واگرا با ارتفاع 200 میکرومتر انجام شده است. اندازه ذرات مورد استفاده 20، 40 و 60 میکرومتر  با چگالی 05/1 گرم بر سانتی متر مکعب می باشد. نتایج شامل میدان سرعت ذرات در مقطع عرضی و طولی کانال و بررسی اثر رینولدز سیال حامل، قطر ذرات، دیواره های بالا-پایین و دیواره های کناری بر میدان سرعت ذرات می باشد. نتایج حل عددی نشان می دهد علاوه بر دیواره های بالا-پایین، دیواره های جانبی نیز تا 42 درصد سرعت ذرات در مقطع مستقیم میکروکانال را کاهش می دهد. در مقایسه با پژوهش های دیگران، در این تحقیق اثر همگرا-واگرا بودن کانال بر روی ته نشینی ذرات مورد بررسی قرار گرفته است. نتایج نشان می دهد در میکروکانال همگرا-واگرا پدیده ته نشینی به دلیل شتاب گرفتن ذرات در ناحیه همگرا نسبت به میکروکانال مستقیم میانگین 45 درصد کمتر اتفاق می افتد که این امر یکی از مزایای میکروکانال های همگرا- واگرا می باشد.

کلیدواژه‌ها

موضوعات


[1].    Ashwood A., Hogen S.V., Rodarte M.A., Kopplin C.R., Rodríguez D.J., Hurlburt, E.T., Shedd T.A., A Multiphase, Micro-Scale PIV Measurement Technique for Liquid Film Velocity Measurements in Annular Two-Phase Flow. International Journal of Multiphase Flow, Vol. 68, pp. 27-39, 2015.
[2].    Crowe C.T., Multiphase flow handbook. CRC press, 2014.
[3].    Santiago J.G., Wereley S.T., Meinhart C.D., Beebe D.J., and Adrian R.J., A Particle Image Velocimetry System for Microfluidics. Experiments in fluids, Vol. 25, No. 4, pp. 316-319, 1998.
[4].    Zabow G., Assi F., Jenks R., and Prentiss M., Guided Microfluidics by Electromagnetic Capillary Focusing. Applied physics letters, Vol. 80, No. 8, pp. 1483-1485, 2002.
[5].    Brenner H. and Bungay P.M., Rigid-Particle and Liquid-Droplet Models of Red Cell Motion in Capillary Tubes. Federation Proceedings, Vol. 30, pp. 1565-1576, 1971.
[6].    Wickramasinghe S.R., Lin W.C., and Dandy D.S., Separation of Different Sized Particles By Inertial Migration. Biotechnology. Vol. 23, pp. 1417-1422, 2001.
[7].    Stokes G.G., On the Effect of the Internal Motion of Fluids on The Motion of Pendulums. Trans. Cambridge Phil. Soc. Vol. 9, pp. 8-94, 1851.
[8].    Lorentz H.A., General Theorem Concerning The Motion of a Viscous Fluid and a Few Consequences Derived From It. Zittingsverslag Koninkl. Akad. van Wetensch. Amsterdam, Vol. 5, pp. 168-175, 1896.
[9].    Jeffery G.B., On The Steady Motion of a Solid of Revolution in a Viscous Fluid. Proc. London Math. Soc., Vol. 14, pp. 327-338, 1915.
[10]. Dean W.R., and O'Neill M.E., A Slow Motion of Viscous Liquid Caused by The Rotation of a Solid Sphere. Mathematika, Vol. 10, pp. 13-24, 1963.
[11]. Brenner H., The Slow Motion of a Sphere Through a Viscous Fluid Towards a Plane Surface. Chem. Eng. Sci., Vol. 16, pp. 242-251, 1961.
[12]. Goldman A.J., Cox R.G., and Brenner H., Slow Viscous Motion of a Sphere Parallel to a Plane Wall.  I. Motion through a quiescent fluid. Chem. Eng. Sci. Vol. 22, pp. 637-651, 1967.
[13]. Goldman A. J., Cox R.G., and Brenner H.,Slow Viscous Motion of a Sphere Parallel to a Plane Wall.  II. Couette flow. Chem. Eng. Sci. Vol. 22, pp. 653-660, 1967.
[14]. Faxen H., Die Bewegung Einer Starren Kugel Langs Der Achse Eines Mit Zaher Flüssigkeit Gefüllten Rohres, Arkiv fِr Matematik. Astronomi och Fysik, Vol. 17, pp. 1-28,1923.
[15]. Happel J., and Brenner H.,Low Reynolds Number Hydrodynamics. 4th ed., Martinus Nijhoff, Dordrecht, 1986.
[16]. Ganatos P., Weinbaum S., and Pfeiffer R., A Strong Interaction Theory for the Creeping Motion of a Sphere Between Plane Parallel Boundaries. 1. Perpendicular motion. J. Fluid Mech., Vol. 99, pp. 739-753,1980.
[17]. Ganatos P., Pfeiffer R., and Weinbaum S., A Strong Interaction Theory for the Creeping Motion of a Sphere Between Plane Parallel Boundaries. 2. Parallel motion. J. Fluid Mech., Vol. 99, pp. 755-783, 1980.
[18]. Sune L., and Martin R.M., Force-Coupling Method for Particulate Two-Phase Flow: Stokes Flow. J. Computational Physics, Vol. 184, pp. 381-405, 2003.
[19]. Staben M.E., and Davis R.H., Particle Transport in Poiseuille Flow in Narrow Channels. Int. J. Multiph. Flow, Vol. 31, pp. 529-547, 2005.
[20]. Ai Y., Joo S.W., Jiang Y., Xuan X., and Qian S., Pressure-Driven Transport of Particles Through a Converging-Diverging Microchannel. BioMicrofluidics, Vol.  17, No. 9, 2009.
[21]. Wang L., Guo  Z.L., Shi B.C., and Zheng C.G., Evaluation of Three Lattice Boltzmann Models for Particulate Flows. Commun. Comput. Phys., Vol. 13, pp. 1151-1172, 2013.
[22]. Nikoubashman A., Likos C.N., and Kahl G., Computer Simulations of Colloidal Particles Under Flow in Microfluidic Channels. Soft Matter, vol. 9, pp. 2543–2770, 2013.
[23]. Razaghi Reza and Saidi Mohammad Hassan, Transportation and settling distribution of microparticles in Low-Reynolds-number poiseuille flow in microchannel. Journal of Dispersion Science and Technology, Vol. 37, No. 4, pp. 582-594, 2016.
[24]. Razaghi Reza, and Saidi Mohammad Hassan, Experimental investigation of drag and lift forces on microparticles in low Reynolds number poiseuille flow in microchannel. Journal of Dispersion Science and Technology, Vol. 37, No. 12, pp. 1767-1777, 2016.
[25]. Razaghi Reza, Shirinzadeh Farhud, Zabetian Mohammad, and Aghanoorian Erfan. Velocity domain and volume fraction distribution of heavy microparticles in low Reynolds number flow in microchannel. Journal of Dispersion Science and Technology, Vol. 38, No. 3, pp. 374-380, 2017.
[26]. Shirinzadeh F., Saidi M.H., and Davari A.R., Experimental Investigation of Slip Velocity and Settling Distribution of Micro-Particles in Converging-Diverging Microchannel. Micro system Technology,  Vol. 23, p. 336, 2017.
[27]. Tao R., Jin Y., Gao X. and Li Z., 2018. Flow characterization in converging-diverging microchannels. Physics of Fluids, Vol. 30, No. 11, p.112004, 2018.
[28]. Zhou T., Ji X., Shi L., Zhang X., Deng Y. and Joo S.W., Dielectrophoretic choking phenomenon in a converging‐diverging microchannel for Janus particles. Electrophoresis, Vol. 40, No. 6 , pp.993-999, 2019.
[29]. Sharaf O.Z., Al-Khateeb A.N., Kyritsis D.C. and Abu-Nada E., Numerical investigation of nanofluid particle migration and convective heat transfer in microchannels using an Eulerian–Lagrangian approach. Journal of Fluid Mechanics, Vol. 878, pp.62-97, 2019.
[30]. Tao R., Ng T., Su Y. and Li Z., A microfluidic rectifier for Newtonian fluids using asymmetric converging–diverging microchannels. Physics of Fluids, Vol. 32, No. 5, p.052010, 2020.