شبیه سازی و بهینه سازی فرآیند ریفرمینگ گازطبیعی با بخار آب و اصلاح مجدد جهت کاهش انتشار دی اکسید کربن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مهندسی شیمی، طراحی فرآیند، دانشگاه صنعتی قوچان، ایران

2 استادیار، گروه مهندسی شیمی، دانشگاه صنعتی قوچان، ایران

چکیده

در این پژوهش مهار CO2 و تعیین نسبت مناسب هیدروژن به منو کسید کربن مورد بررسی قرار گرفته است. محدوده دما و فشار عملیاتی فرآیند به برتیب oC 525-850 و bar 12-18 مطابق با استانداردهای موجود در منابع در نظر گرفته شد. مکان یابی جریان برگشتی جهت صرفه جویی اقتصادی و جلوگیری از هدر رفت گاز متان، و همچنین نسبت بخار آب به خوراک مناسب جهت انجام واکنش‌های ریفرمینگ با راندمان بالا مورد بررسی قرار گرفت. مدل ترمودینامیکی انتخاب شده در این پژوهش انطباق بسیار خوبی با داده‌های صنعتی با بیشینه انحراف 10% دارد. نتایج شبیه سازی نشان داد که بهترین شرایط عملیاتی برای مهار CO2، محدوده دمایی C°650-550 و و فشار bar 4/15 می‌باشد. همچنین نسبت مناسب بخار آب به خوراک فرآیند سه در نظر گرفته شد. مکان مناسب برای ورود جریان برگشتی، راکتور شیفت می‌باشد. در این شرایط مهار CO2 به خوبی انجام می‌شود و نسبت مناسب هیدروژه به منوکسید کربن (29/2) به عنوان خوراک مناسب صنعت تولید الکل تولید می‌شود.

کلیدواژه‌ها

موضوعات


[1] Beiki H., Soukhtanlou E., Determination of optimum insulation thicknesses for salinity gradient solar pond’s bottom wall under different climate conditions, SN Applied Sciences, Vol. 2, No. 7, pp. 1284, 2020.
[2]    Keramati M., Beiki H., The effect of pH adjustment together with different substrate to inoculum ratios on biogas production from sugar beet wastes in an anaerobic digester, Journal of Energy Management and Technology, Vol. 1, No. 2, pp. 6-11, 2017.
[3]    Beiki H., Keramati M., Improvement of Methane Production from Sugar Beet Wastes Using TiO2 and Fe3O4 Nanoparticles and Chitosan Micropowder Additives, Applied Biochemistry and Biotechnology, Vol. 189, No. 1, pp. 13-25, 2019.
[4]    Beiki H., Soukhtanlou E., Improvement of salt gradient solar ponds’ performance using nanoparticles inside the storage layer, Applied Nanoscience, Vol. 9, No. 2, pp. 243-254, 2019.
[5]    Pazhoohan J., Beiki H., Esfandyari M., Experimental investigation and adaptive neural fuzzy inference system prediction of copper recovery from flotation tailings by acid leaching in a batch agitated tank, International Journal of Minerals, Metallurgy, Materials, Vol. 26, No. 5, pp. 538-546, 2019.
[6]    Yaumi A., Bakar M.Z.A., Hameed B.H., Recent advances in functionalized composite solid materials for carbon dioxide capture, Energy, Vol. 124, pp. 461-480, 2017.
[7]    Jankovský O., Lojka M., Lauermannová A.-M., Antončík F., Pavlíková M., Pavlík Z., Sedmidubský D., Carbon Dioxide Uptake by MOC-Based Materials, Applied Sciences, Vol. 10, No. 7, pp. 2254, 2020.
[8]    Wu H.-C., Rui Z., Lin J.Y.S., Hydrogen production with carbon dioxide capture by dual-phase ceramic-carbonate membrane reactor via steam reforming of methane, Journal of Membrane Science, Vol. 598, pp. 117780, 2020.
[9]    Han L., Liu Q., Lin K., Wang Q., Rong N., Liang X., Shaikh A.R., Feng Y., Zhong Y., Enhanced hydrogen production via catalytic toluene reforming with in situ carbon dioxide capture: Effects of a hybrid iron-calcium composite prepared by impregnation, Energy Conversion and Management, Vol. 214, pp. 112834, 2020.
[10]   Sharma I., Friedrich D., Golden T., Brandani S., Exploring the opportunities for carbon capture in modular, small-scale steam methane reforming: An energetic perspective, International Journal of Hydrogen Energy, Vol. 44, No. 29, pp. 14732-14743, 2019.
[11]  Wu H., Rui Z., Lin J., Hydrogen production with carbon dioxide capture by dual-phase ceramic-carbonate membrane reactor via steam reforming of methane, Journal of Membrane Science, Vol. 598, pp. 117780, 2020.
[12]  Varsano F., Bellusci M., Barbera A. L., Petrecca M., Ahbino M., Sangregorio C., Dry reforming of methane powered by magnetic induction, International Journal of Hydrogen Energy, Vol. 44, pp. 21037-21044, 2019.
[13]  Cunha A.F., Mata T.M., Caetano N.S., Martins A.A., Loureiro J.M., Catalytic bi-reforming of methane for carbon dioxide ennoblement, Energy Reports, Vol. 6, pp. 74-79, 2020.
[14]  Gao N., Cheng M., Quan C., Zheng Y., Syngas production via combined dry and steam reforming of methane over Ni-Ce/ZSM-5 catalyst, Fuel, Vol. 273, pp. 117702, 2020.
[15]  De Campos Roseno K.T., Alves R.M.D.B., Giudici R., Schmal M., Syngas Production Using Natural Gas from the Environmental Point of View, Biofuels‐State of Development, pp. 273-290, 2018.
[16] York A.P.E., Xiao T.C., Green M.L.H., Claridge J.B., Methane oxyforming for synthesis gas production, Catalysis Reviews, Vol. 49, No. 4, pp. 511-560, 2007.
[17] عبدالهی م.، نکوئی ح.، مروری بر فن آوری های نوین تولید گاز سنتز، فصلنامه علمی ترویجی فرآیند نو، د. 8، ش. 41، ص. 6-20، 1392.
[18] شریف آبادی عسکری ح.، هاتفی م.، اتحاد ع.، توحید ا.، علیزاده س.، نجفی زاده م. ر.، نشریه علمی، آموزشی و پژوهشی صنعت نفت، گاز و پتروشیمی، سفیر امید، 1395.
[19]  Xu J., Froment G. F., Steam reforming methanation and water-gas shift: I, Intrinsic kinetics, AICHE, Vol. 35, pp. 88-96, 1989.
[20]  Cunha A. F., Mata T. M., Caetano N. S., Martins A. A., Loureiro J. M., Catalytic bi-reforming of methane for carbon dioxide ennoblement, 6th International Conference on Energy and Environment Research, Aveiro, Portugal, 2019.
[21] آتشی ح.، آراء آ.،.تعیین مدل و شبیه سازی راکتور تولید گاز سنتز، نشریه دانشکده مهندسی شیمی، د. 18، ش. 2، ص. 87-69، 1385.
[22]  Taheri S.A., Manshadi M.H.D., Moghaddam A.R.A., Normal Flare Gas Recovery for Iman Khomeini oil Refinery (Phase II), 4th Conference on Emerging Trends in Energy Conservation, Tehran, Iran, 2014.