شبیه‌سازی عددی انتقال گرمای جابجایی ترکیبی نانوسیال درون کانال دارای حفره روباز با استفاده از مدل غیرهمگن بونگیورنو

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی مکانیک، دانشگاه ارومیه، ارومیه، ایران

2 استادیار، گروه مهندسی مکانیک، دانشگاه ارومیه، ارومیه، ایران

3 استاد، گروه مهندسی مکانیک، دانشگاه ارومیه، ارومیه، ایران

4 گروه مهندسی مکانیک ، دانشگاه صنعتی ارومیه، ارومیه، ایران

چکیده

در این مقاله، انتقال گرمای جابجایی ترکیبی نانوسیال مغناطیسی آب-اکسید­آهن درون یک کانال دارای حفره روباز با دیواره گرم، مورد مطالعه قرار گرفته است. برای مدل­سازی نفوذ نانوذرات در سیال پایه از مدل غیر همگن بونگیورنو با فرض تاثیر ترموفورسس و براونی استفاده شده است. تقریب بوزینسک برای مدل­سازی انتقال گرمای جابجایی آزاد بکار گرفته شده است. معادلات حاکم با استفاده از روش حجم محدود و الگوریتم SIMPLE، بصورت عددی حل شده­اند. در ابتدا مقایسه­ای مابین نتایج روش تکفازی و مدل غیر همگن حاضر انجام و سپس، تاثیر تغییرات پارامترهای مختلف مانند عدد رینولدز (10، 100 300 و 600)، کسر حجمی نانوذرات (02/0، 04/0 و 06/0) و عدد ریچاردسون (01/0، 1 و 10) به تفصیل مورد بررسی قرار گرفته­ است. با توجه به نتایج حاصل، با افزودن نانوذرات، بیشترین مقدار افزایش انتقال گرما در رینولدز­های پایین ( 62/10 %) اتفاق می­افتد. به واسطه غالب بودن مکانیزم نفوذ ناشی از اثرات ترموفروسس، کسر حجمی نانوذرات در نزدیکی دیواره گرم، کمتر از سایر نقاط می باشد. در عدد رینولدز 10، پدیده ترموفورسس تاثیر بیشتری بر روی نانوذرات نسبت به رینولدزهای بالا دارد.

کلیدواژه‌ها


  • Mansour R. B., Nguyen C. T., Galanis N., Numerical study of transient heat and mass transfer and stability in a salt-gradient solar pond. International Journal of Thermal Sciences, Vol. 43, No.8, pp. 779-790, 2004.
  • Selimefendigil F., Öztop H. F., Mixed convection in a partially heated triangular cavity filled with nanofluid having a partially flexible wall and internal heat generation. Journal of the Taiwan Institute of Chemical Engineers, Vol. 70, pp. 168-178, 2017
  • Alves T. A., Altemani C. A., An invariant descriptor for heaters temperature prediction in conjugate cooling. International Journal of Thermal Sciences, Vol. 58, pp. 92-101, 2012.
  • Kuznetsov G. V., Sheremet M. A., New approach to the mathematical modeling of thermal regimes for electronic equipment. Russian Microelectronics, Vol. 37, No. 2, pp. 131-138, 2008.
  • Chan Y., Tien C., Laminar natural convection in shallow open cavities. Journal of heat transfer, Vol. 108, No. 2, pp. 305-309, 1986.
  • Papanicolaou E., Jaluria Y., Transition to a periodic regime in mixed convection in a square cavity. Journal of Fluid Mechanics, Vol. 239, pp. 489-509, 1992.
  • Burgos J., Cuesta I., Salueña C., Numerical study of laminar mixed convection in a square open cavity. International Journal of Heat and Mass Transfer, Vol. 99, pp. 599-612, 2016.
  • Choi S. U., Eastman J. A., Enhancing thermal conductivity of fluids with nanoparticles. ASME FED 231, 1995. 
  • Das S. K., Choi S. U., Patel H. E., Heat transfer in nanofluids; a review. Heat transfer engineering, Vol. 27, No. 10, pp. 3-19, 2006.
  • Wang X. Q., Mujumdar A. S., Heat transfer characteristics of nanofluids: a review. International journal of thermal sciences, Vol. 46, No. 1, pp. 1-19, 2007.
  • Motlagh S. Y., Soltanipour H., Natural convection of Al2O3-water nanofluid in an inclined cavity using Buongiorno's two-phase model. International Journal of Thermal Sciences, Vol. 111, pp. 310-320, 2017.
  • Rashidi S., Bovand M., Esfahani J. A., Opposition of magnetohydrodynamic and Al2O3-water nanofluid flow around a vertex facing triangular obstacle. Journal of Molecular Liquids, Vol. 215, pp. 276-284, 2016.
  • Alsabery A. I., Sheremet M. A., Chamkha A. J., Hashim I., MHD convective heat transfer in a discretely heated square cavity with conductive inner block using two-phase nanofluid model. Scientific reports, Vol. 8, No. 1, pp. 1-23, 2018.
  • Sheikholeslami M., Ellahi R., Vafaei K. Study of Fe3O4-water nanofluid with convective heat transfer in the presence of magnetic source. Alexandria Engineering Journal, Vol. 57, pp. 565-575, 2018.
  • Imani-Mofrad P., Heris S. Z., Shanbedi M., Experimental investigation of the effect of different nanofluids on the thermal performance of a wet cooling tower using a new method for equalization of ambient conditions. Energy conversion and management, Vol. 158, pp. 23-35, 2018.
  • Bondareva N. S., Sheremet M. A., Oztop, H. F., Abu-Hamdeh N., Entropy generation due to natural convection of a nanofluid in a partially open triangular cavity. Advanced Powder Technology, Vol. 28, No.1, pp. 244-255, 2017.
  • Bondareva N. S., Sheremet M. A., Oztop H. F., Abu-Hamdeh N., Heatline visualization of natural convection in a thick walled open cavity filled with a nanofluid. International Journal of Heat and Mass Transfer, Vol. 109, pp. 175-186, 2017.
  • Pen Y., Alsagri A. S., Afrand M., Moradi R., A numerical simulation for magnetohydrodynamic nanofluid flow and heat transfer in rotating horizontal annulus with thermal radiation. RSC Advances, Vol. 39, pp. 22185-22197, 2019.
  • Sheikholeslami M., Shafee A., Zareei A. S., Rizwan-ulHaq., Zhixiong L., Heat transfer of magnetic nanoparticles through porous media including exergy analysis. Journal of molecular liquids, 279, pp 719-732, 2019.
  • Motlagh S. Y., Golab E., Sadr A. N., Two-phase modeling of the free convection of nanofluid inside the inclined porous semi-annulus enclosure. International Journal of Mechanical Sciences, Vol. 164, 105183, 2019.
  • Motlagh S. Y., Taghizadeh S., Soltanipour H. Natural convection heat transfer in an inclined square enclosure filled with a porous medium saturated by nanofluid using Buongiorno’s mathematical model. Advanced Powder Technology, Vol. 27, No. 6, pp 2526-2540, 2016.
  • Rahman M.M., Öztop H. F., Saidur R., Mekhilef S., Al-Salem K., Finite element solution of MHD mixed convection in a channel with a fully or partially heated cavity. Fluids, Vol. 79, pp. 53–64, 2013.
  • Manca O., Nardini S., Khanafer K., Vafai K., Effect of Heated Wall Position On Mixed Convection in a Channel With an Open Cavity. Numerical Heat Transfer, Part A: Applications: An International Journal of Computation and Methodology, Vol. 43, No. 3, pp. 259-282, 2003.
  • Mehrez Z., ElCafsi A., Belghith A., Le Quéré P., The entropy generation analysis in the mixed convective assisting flow of Cu–water nanofluid in an inclined open cavity. Advanced Powder Technology, 26, pp. 1442–1451, 2015.
  • Mehrez Z., ElCafsi A., Belghith A., LeQuéré P., MHD effects on heat transfer and entropy generation of nanofluid flow in an open cavity. Journal of Magnetism and Magnetic Materials, Vol. 374, pp. 214–224, 2015.
  • Buongiorno J., Convective transport in nanofluids. Journal of heat transfer, Vol. 128, No. 3, pp. 240-250, 2006.
  • Sheikhzadeh G.A., Dastmalchi M., Khorasanizadeh H., Effects of nanoparticles transport mechanisms on Al2O3-water nanofluid natural convection in a square enclosure. J. Therm. Sci, Vol. 66, pp. 51–62, 2013.
  • Brinkman, H. C., The viscosity of concentrated suspensions and solutions. The Journal of Chemical Physics, Vol. 20, No. 4, pp. 571-581, 1952.
  • Maxwell J.C., A Treatiseo Electricity and Magnetism Oxford University Press, Cambridge, 1904.
  • Ho C. J., Liu W. K., Chang Y. S., Lin C. C., Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: an experimental study. International Journal of Thermal Sciences, Vol. 49, No. 8, pp.1345-1353, 2010.