شبیه‌سازی عددی شکل‌دهی لوله‌های گرمایی شیاردار به کمک فرآیند اکستروژن و بررسی تاثیر پارامترهای هندسی و جنس در شکل‌دهی مناسب آنها

نوع مقاله : پژوهشی کامل

نویسندگان

1 کارشناس ارشد، گروه مهندسی مکانیک، دانشگاه اصفهان، اصفهان، ایران

2 استادیار، گروه مهندسی مکانیک، دانشگاه اصفهان، اصفهان، ایران

3 دانشیار، گروه مهندسی مکانیک، دانشگاه اصفهان، اصفهان، ایران

4 دانشیار، پژوهشکده مواد و انرژی، مرکز تحقیقاتی هوافضای ایران، اصفهان، ایران

چکیده

لوله گرمایی یک وسیله انتقال گرمای دو‌فازی، با قابلیت رسانایی گرمایی بسیار بالا و موثر است. ساختار یک لوله گرمایی از نظر عملی به سه منطقه تقسیم می‌شود: الف) ناحیه تبخیرکننده که در یک انتهای لوله قرار‌داشته و در این منطقه گرما به محفظه وارد می‌شود، ب) ناحیه چگالنده که در انتهای دیگر لوله بوده و گرما در این ناحیه دفع می‌گردد و ج) ناحیه آدیاباتیک که بین دو ناحیه تبخیرکننده و چگالنده را شامل می‌شود. در این تحقیق، فرآیند شکل‌دهی لوله‌های گرمایی شیاردار در ابعاد مینی/میکرو به روش اکستروژن شبیه‌سازی عددی شده و امکان تولید توسط فرآیند اکستروژن بررسی‌ می‌گردد. در خلال شبیه‌سازی‌های عددی، میزان نیروی لازم برای شکل‌دهی و تاثیر متغیرهایی مانند جنس لوله، قطر لوله، طول لوله، تعداد شیارها در مقطع لوله و پروفیل شیار بررسی می‌گردد. به‌علاوه، اثرات متقابل پارامترها بر یکدیگر شناسایی شده و انتخاب مناسب برخی پارامترها نظیر سرعت فرآیند اکستروژن و نوع پروفیل شیار صورت می‌گیرد.

کلیدواژه‌ها

موضوعات


[1]  Shukla K. N. Heat Pipe for Aerospace Applications-An Overview,Journal of Electronics Cooling and Thermal Control, 2015.
[2]  Glaugler R. Heat Transfer. Patent No. 2350348, 1944.
[3]  Grover G.M. Evaporation-Condensation Heat Transfer Device. US patent No. 3229759, 1966.
[4]  Marcinichen J.B., Thome J.R., Michel B. (2010) Cooling of microprocessors with micro-evaporation: a novel two-phase cooling cycle, Int. J. Refrig. 33.
[5]  Marcinichen J.B., Olivier J.A. Lamaison N., Thome J.R., Advances in electronics cooling, Heat Transfer. 34, 2013.
[6]  Mehendale S.S.J., Jacobi A.M., Shah R.K. Fluid flow and heat transfer at microand meso-scales with application to heat exchanger design, Appl. Mech. Rev. 53, 2000.
[7]  Kandlikar S.G. Two-phase flow patterns, pressure drop, and heat transfer during boiling in minichannel flow passages of compact evaporators, Heat Transfer Eng. 23, 2002.
[8]  Chen P., Tang Y. Research on ploughing–extrusion process mechanism of multi/micro dimensional grooves inside cylindrical micro heat pipe. J Habin Inst Technol, 2005.
[9]  Wang X., Tang Y., Chen P. Investigation into performance of a heat pipe with micro grooves fabricated by extrusion–ploughing, Energy Conversion and Management 50, 2009.
[10]             Tang Y., Chen P., Wang X. Experimental investigation into the performance of heat pipe with micro grooves fabricated by Extrusion–ploughing process, Energy Conversion and Management 51, 2010.
[11]             Putra N., Putri F. N. The Fabrication and Testing Development of Heat Pipe Wicks: IEEE 2nd International Conference on Power and Energy Applications, 2019.
[12]             Iwata N., Take Y., Okamoto A., Ogawa H., Yumoto T., Ono Y., Kokubun M., Takahashi T. Evaluation of In-Orbit Thermal Performance of X-Ray Astronomy Satellite “Hitomi”, 2017.
[13]             Alijani H., Çetin B., Akkuş Y., Dursunkaya Z. Experimental Thermal Performance Characterization of Flat Grooved Heat Pipes, Heat Transfer Engineering, 2018.
[14]             Ababneh M. T., Tarau C., Anderson W. G. High Temperature Heat Pipe for Solid-State Power Amplifier (SSPA) Thermal Mamagement, Advanced Cooling Technologies, 2019.
[15]             Ababneh M. T., Tarau C., Anderson W. G. Thermal Control of Lunar and Mars Rovers/Landers Using Hybrid Heat Pipes, journal of  thermophysics and heat transfer, 2019.
[16]             Anand A.R. Analytical and experimental investigations on heat transport capability of axially grooved aluminium-methane heat pipe, International Journal of Thermal Sciences 139, 2019.
[17]             Chen S., Han H., Shi J., Lu Q., Hu L., Ai B. Applications of Sodium/GH4099 Heat Pipes for Nose Cap Cooling, Microgravity Science and Technology, 2019.
[18]             Noorani-Azad M., Bakhshi-Jooybari M., Hosseinipour S.J., Gorji A. Experimental and numerical study of optimal die profile in cold forward rod extrusion of aluminum, Journal of Materials Processing Technology 164–165, 2005.
[19]             Wagener H.W., Wolf J. Coefficient of friction in cold extrusion, J. Mater. Process. Technol. 44, 1994.
[20]             Johnson G. R., Cook W. H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures, Engineering Fracture Mechanics Vol. 21, No. I, pp. 3148, 1985.
[21]             Li X., Li M., Li M., Wu R., Wan Y., Cheng T. Forming method of micro heat pipe with compound structure of sintered wick, Heat Mass Transfer, 2015.
[22]             Sharmaa P., Chandela P., Mahajanb P., Singh M. Quasi-Brittle Fracture of Aluminium Alloy 2014 under Ballistic Impact, Procedia Engineering 173, 2017.