تحقیق آزمایشگاهی جهت بهبود بازدهی آب شیرین کن خورشیدی پلکانی با استفاده از پارافین/ اکسید گرافن

نوع مقاله : مقاله کوتاه

نویسندگان

1 دانشیار، گروه مهندسی مکانیک، دانشگاه آزاد اسلامی، مشهد، ایران

2 دانشجوی دکتری، گروه مهندسی مکانیک، دانشگاه آزاد اسلامی، مشهد، ایران

3 کارشناس ارشد تبدیل انرژی دانشگاه آزاد اسلامی مشهد، ایران

4 دانشجوی کارشناسی ارشد تبدیل انرژی دانشگاه آزاد اسلامی مشهد، ایران

چکیده

مطالعه حاضر با هدف استفاده از اکسید گرافن (GO) با غلظت حجمی با درصد وزنی 2/0، 4/0، 6/0  در پارافین، به عنوان مواد تغییر فاز دهنده (PCM)، برای بهبود بهره­وری آب شیرین کن خورشیدی متمرکز شده­است. افزودن اکسید گرافن به پارافین، دمای ذوب را کاهش می­دهد. آب شیرین کن که در آن از پارافین و اکسید گرافن استفاده شده­است دارای 25% فاکتور خنک کاری در مقایسه با آب شیرین کن خورشیدی می­باشد کهبآ    تنها با پارافین کار می­کنند. عدد ناسلت بدست آمده در زمان ذوب بیانگر این است که انتقال گرمای جابجایی آزاد در منطقه ذوب آب شیرین کن با افزودن اکسید گرافن با درصد وزنی مناسب در PCM در مقایسه با حالتی که پارافین به تنهایی PCM استفاده شده­است، افزایش یافته­است. همچنین افزایش دمای دیواره بالایی که گرم­تر است(Th)، موجب افزایش عدد ناسلت می­شود. در نهایت، یک معادله تجربی برای ارتباط میان عدد ناسلت متوسط به عنوان تابعی از عدد رایلی (Ra)، عدد استفان ((Ste، فاکتور سرمایش (Sb) و عدد فوریه (Fo) ارایه شده­است. این رابطه نشان می­دهد که افزایش عدد ناسلت رابطه معکوس با عدد فوریه دارد.

کلیدواژه‌ها

موضوعات


[1]  Asbik M., Ansari O., Bah A., Zari N., Mimet A. and El-Ghetany H., Exergy analysis of solar desalination still combined with heat storage system using phase change material (PCM). Desalination, Vol. 381, pp. 26-37, 2016.
[2]  Faegh M. and Shafii M.B., Experimental investigation of a solar still equipped with an external heat storage system using phase change materials and heat pipes. Desalination, Vol. 409, pp. 128-135, 2017.
[3]  Safari A., Saidur R., Sulaiman F., Xu Y. and Dong J., A review on supercooling of Phase Change Materials in thermal energy storage systems. Renewable and Sustainable Energy Reviews, Vol. 70, pp. 905-919, 2017.
[4]  Zhou Q., Liu P.-F., Tzeng C.-T. and Lai C.-M., Thermal Performance of Microencapsulated Phase Change Material (mPCM) in Roof Modules during Daily Operation. Energies, Vol. 11, pp. 679, 2018.
[5]  Li S., Chen Y. and Sun Z., Numerical simulation and optimization of the melting process of phase change material inside horizontal annulus. Energies, Vol. 10, pp. 1249, 2017.
[6]  گچکاران آ. و جدا ف.، " طراحی و بهینه­سازی آب­شیرین کن خورشیدی با ذخیره­سازی انرژی گرمایی به کمک مواد تغییر فاز دهنده" ، مجله مهندسی مکانیک دانشگاه تبریز، د. 49، ش. 1، ص. 235-244، 1398.
[7]   خسروجردی س.، میر عب /آب دیونیزه بر عملکرد یک گردآورنده جذب مستقیم خورشیدی"، مجله مهندسی مکانیک دانشگاه تبریز، د. 48، ش. 1، ص. 169-177، 1397.
[8]  Kumar T.S., Jegadheeswaran S. and Chandramohan P., Performance investigation on fin type solar still with paraffin wax as energy storage media. Journal of Thermal Analysis and Calorimetry, Vol. 136, pp. 101-112, 2019.
[9]  Li M., A nano-graphite/paraffin phase change material with high thermal conductivity. Applied Energy, Vol. 106, pp. 25-30, 2013.
 
[10]             Sheikholeslami M., Numerical modeling of nano enhanced PCM solidification in an enclosure with metallic fin. Journal of Molecular Liquids, Vol. 259, pp. 424-438, 2018.
[11]             Vajjha R.S., Das D.K. and Namburu P.K., Numerical study of fluid dynamic and heat transfer performance of Al2O3 and CuO nanofluids in the flat tubes of a radiator. International Journal of Heat and fluid flow, Vol. 31, pp. 613-621, 2010.
[12]             Mahdi J.M. and Nsofor E.C., Solidification of a PCM with nanoparticles in triplex-tube thermal energy storage system. Applied Thermal Engineering, Vol. 108, pp. 596-604, 2016.
[13]             Arasu A.V. and Mujumdar A.S., Numerical study on melting of paraffin wax with Al2O3 in a square enclosure. International Communications in Heat and Mass Transfer, Vol. 39, pp. 8-16, 2012.
[14]             Shukla A.K., Sudhakar K. and Baredar P., Design, simulation and economic analysis of standalone roof top solar PV system in India. Solar Energy, Vol. 136, pp. 437-449, 2016.
[15]             Sint N.K.C., Choudhury I., Masjuki H.H. and Aoyama H., Theoretical analysis to determine the efficiency of a CuO-water nanofluid based-flat plate solar collector for domestic solar water heating system in Myanmar. Solar Energy, Vol. 155, pp. 608-619, 2017.
[16]             Kermani M., Goudarzi G., Shahsavani A., Dowlati M., Asl F.B., Karimzadeh S., Jokandan S.F., Aghaei M., Kakavandi B. and Rastegarimehr B., Estimation of short-term mortality and morbidity attributed to fine particulate matter in the ambient air of eight Iranian cities. Annals of Global Health, Vol. 84, 2018.
[17]             Sampathkumar K. and Senthilkumar P., Utilization of solar water heater in a single basin solar still—An experimental study. Desalination, Vol. 297, pp. 8-19, 2012.
[18]             Ho C.J. and Gao J.Y., An experimental study on melting heat transfer of paraffin dispersed with Al2O3 nanoparticles in a vertical enclosure. International Journal of Heat and Mass Transfer, Vol. 62, pp. 2-8, 2013.
[19]             Bergman T.L., Incropera F.P., DeWitt D.P. and Lavine A.S., Fundamentals of heat and mass transfer; John Wiley & Sons: 2011.
[20]             Ho C.J. and Gao J.Y., An experimental study on melting heat transfer of paraffin dispersed with Al2O3 nanoparticles in a vertical enclosure. International Journal of Heat and Mass Transfer, Vol. 62, pp. 2-8, 2013.