بررسی تجربی اثرات نسبت پرشوندگی و زاویه انحراف بر روی عملکرد حرارتی لوله های گرمایی نوسانی داخل شیاردار

نوع مقاله : پژوهشی کامل

نویسندگان

1 مربی، گروه مکانیک، دانشکده فنی و حرفه‌ای تبریز، دانشگاه فنی و حرفه‌ای، ایران دانشجوی دکتری مکانیک تبدیل انرژی، گروه مهندسی مکانیک، دانشگاه ارومیه، ایران

2 استادیار، گروه مهندسی مکانیک، دانشگاه ارومیه، ارومیه، ایران

3 استادیار، دانشکده علوم و مهندسی، دانشگاه آنگلیا روسکین، چلمزفورد، انگلستان

چکیده

در این تحقیق به‌صورت تجربی عملکرد حرارتی لوله گرمایی نوسانی داخل شیاردار (IGOHP) با سیال عامل آب مقطر موردبررسی قرار گرفت. نتیجه آزمایش‌ها نشان داد که در نسبت پرشوندگی 60 درصد کمترین مقاومت گرمایی و بیشترین رسانایی گرمایی بدست آمد، سپس IGOHP به ازای نسبت پرشوندگی بهینه (60 درصد) در توان‌های گرمایی مختلف و در زوایای انحراف مختلف مورد آزمایش قرار گرفت. نتایج نشان داد که در توان گرمایی 50 وات مقاومت گرمایی در زوایای °70 و °90 بیشتر از زوایای °5، °15 و °30 است و در بین آن‌ها کمترین مقاومت گرمایی در زاویه °15 درجه بدست آمد ولی در توان‌های گرمایی 100 وات و بالاتر مقاومت گرمایی در زوایه °90 کمتر از بقیه زوایا بود. همچنین شروع به‌کار اولیه در زاویه انحراف °15 زودتر از°90 اتفاق افتاد. نتیجه قابل‌توجه این است که در توان‌های گرمایی بالاتر از 200 وات مقدار مقاومت گرمایی در زاویه°15 تقریباً برابر با زاویه °90 است که به‌نوبه خود یک دستاورد مهم برای IGOHP می‌باشد و می‌تواند نویدبخش حل مشکل لوله‌های گرمایی نوسانی در زوایای نزدیک به افق باشد.

کلیدواژه‌ها

موضوعات


[1]     Akachi H., Structure of a heat pipe. USA, Patent 4921041, 1990.
[2]     Lin Y.H., Kang S.W., and Chen H.L., Effect of silver nano-fluid on pulsating heat pipe thermal performance. Applied Thermal Engineering, vol. 82, No. 11, pp. 1312-1317, 2008.
[3]     Jafarmadar S., Mobadersani F., Mirzae I., Investigation of Entropy Generation through the Operation of an Unlooped Pulsating. IJE transactions B: Applications,Vol. 29, No. 8, pp. 1151-1159, 2016.
[4]     Kim S. J., Seo J. K., Do K, H., Analytical and experimental investigation on the operational characteristics and the thermal optimization of a miniature heat pipe with a grooved wick structure. International Journal of Heat and Mass Transfer, No. 46, pp. 2051–2063, 2003.
[5]     Xu J.J., Zhang Y.W., Ma H.B., Effect of internal wick structure on liquid-vapor oscillatory flow and heat transfer in an oscillating heat pipe. J. Heat Transfer, Vol. 131, pp. 121012-10, 2009.
[6]     Jiao A.J., Riegler R., Ma H.B., Peterson G.P., Thin film evaporation effect on heat transport capability in a grooved heat pipe. Microfluid. Nanofluid, Vol. 1, pp. 227–233, 2005.
[7]     Vasiliev L.L., Micro and miniature heat pipes – electronic component coolers. Applied Therm Eng. Vol. 28, pp. 266–273, 2008.
[8]     Faghri A., Review and advances in heat pipe science and technology. J. Heat Transfer, Vol. 134, pp. 123001-18, 2012.
[9]     Wannapakhe S., Rittidech S., Bubphachot B., and Watanabe O., Heat transfer rate of a closed-loop oscillating heat pipe with check valves using silver nanofluid as working fluid. Journal of Mechanical Science and Technology, vol. 23, pp. 1576-1582, 2009.
[10] Ji Y., Xu C., Ma H.B., Pan X., X., An experimental investigation of the heat transfer performance of an oscillating heat pipe with copper oxide (CuO) microstructure layer on the inner surface. J. Heat Transfer, Vol. 135, pp. 074504-8, 2013.
[11] Zhang F.Z., Winholtz R.A., Black W.J., Wilson M.R., Taub H., Ma H.B., Effect of hydrophilic nanostructured cupric oxide (CuO) surfaces on the heat transport capability of a flat plate oscillating heat pipe. J. Heat Transfer, Vol138, pp. 062901-7, 2016.
[12] Hao T.T., Ma X.H., Lan Z., Li N., Zhao Y.Z., Ma H.B., Effects of hydrophilic surface on heat transfer performance and oscillating motion for an oscillating heat pipe. Int. J. Heat Mass Transfer, Vol. 72, pp. 50–65, 2014.
[13] Hao T., Ma X., Lan Z., Li N., Zhao Y., Effects of superhydrophobic and superhydrophilic surfaces on heat transfer and oscillating motion of an oscillating heat pipe. J. Heat Transfer, Vol. 136, pp. 082001-13, 2014.
[14]  Qu J., Li X., Xu Q., Wang Q., Thermal performance comparison of oscillating heat pipes with and without helical micro-grooves. Heat and Mass Transfer, Vol. 53, pp. 3383–3390, 2017.
[15] Jahan S. A., Ali M., Islam M.Q., Effect of inclination angles on heat transfer characteristics of a closed loop pulsating heat pipe (CLPHP). Procedia Engineering, Vol. 56, pp. 82 – 87, 2013.
[16] Pramod R. Pachghare, Ashish M. Mahalle. effect of inclination angle on the closed loop pulsating heat pipe thermal performance. Proceedings of the ASME 2013 Heat Transfer Summer Conference. July 14-19, Minneapolis, MN, USA, 2013.
[17] Paudel S. B., Michna G. J., effect of inclination angle on pulsating heat pipe performance. Proceedings of the ASME 12th International Conference on Nanochannels, Microchannels, and Minichannels. August 3-7, Chicago, Illinois, USA, 2014.
[18] Borkar R., Pachghare P., Thermo-Hydrodynamic Behavior of Methanol Charged Closed Loop Pulsating Heat Pipe. Frontiers in Heat Pipes (FHP), Vol. 5, No. 1, pp. 01-07, 2014.
 
[19] Goshayeshi H. R., Goodarzi M., Safaei M. R, Dahari M., Experimental Study on the Effect of Inclination Angle on Heat Transfer Enhancement of a Ferrofluid in a Closed Loop Oscillating Heat Pipe under Magnetic Field. Experimental Thermal and Fluid Science, Vol. 74, pp. 265–270, 2016.
[20] Nowak A. I., Czajkowski C., Błasiak P., Pietrowicz S., Thermal Performances of a Oscillating Heat Pipe with different inclination angles, filling ratios and working fluids. International Symposium on Oscillating/Pulsating Heat Pipes, Daejeon, Korea, 25-28 September, 2019.
[21] Li M., Li L., Xu D., Effect of filling ratio and orientation on the performance of a multiple turn helium pulsating heat pipe. Cryogenics. Vol. 100, pp. 62-68, 2019.
[22] Yang H., Wang J., Wang N., Yang F., Experimental study on a pulsating heat pipe heat exchanger for energy saving in air-conditioning system in summer. Energy and Buildings. Vol. 197, pp. 1-6, 2019.
[23] M.A. Kedzierski, J.M. Goncalves, Horizontal convective condensation of alternative refrigerants within a micro-fin tube. J. Enhanc. Heat Transfer, Vol. 6, pp. 161–178, 1999.
[24] Khandekar S., Thermo-hydrodynamics of closed loop pulsating heat pipes. 2004.
[25] Khandekar S., Dollinger N., Groll M., Understanding operational regimes of closed loop pulsating heat pipes: an experimental study. Applied Therm. Eng., Vol. 23, PP. 707–719, 2003.
[26] Qu J., Wang Q., Experimental study on the thermal performance of vertical closed-loop oscillating heat pipes and correlation modeling. Applied Energy, VOL. 112, pp. 1154–1160, 2013.
[27] Douglas C. M., Design and analysis of experiments, John Wiley and sons. 2001.