بررسی تجربی تاثیر نانو گرافن اکسید عامل‌دار بر روی خواص مکانیکی چسب اپوکسی

نوع مقاله : پژوهشی کامل

نویسندگان

1 دانشجوی دکتری، گروه مهندسی مکانیک، دانشگاه صنعتی سهند، شهر جدید سهند، تبریز، ایران

2 دانشیار، گروه مهندسی مکانیک، دانشگاه تبریز، شهر جدید سهند، تبریز، ایران

3 دانشیار، گروه مهندسی مکانیک، دانشگاه صنعتی سهند، شهر جدید سهند، تبریز، ایران

4 استاد، گروه مهندسی پلیمر، دانشگاه صنعتی سهند، شهر جدید سهند، تبریز، ایران

چکیده

در این پژوهش، اثر افزودن گرافن اکسید عامل‌دار بر روی خواص مکانیکی چسب اپوکسی بررسی شده است. ابتدا گرافن اکسید با اکسایش گرافیت به کمک روش اصلاح شده هامرز، تهیه و سطح آن با عامل سیلانی، تری آمینو پروپیل تری متوکسی سیلان (3-APTES) اصلاح گردید. تاثیر افزودن مقادیر 0.1، 0.2 و 0.3 درصد وزنی از گرافن اکسید آمینه (GO-NH2) روی خواص کششی و برشی چسب اپوکسی مورد بررسی قرار گرفت. سپس نمونه بالک و نمونه اتصال چسبی ضخیم(TAST) از چسب خالص و چسب تقویت شده با مقادیر وزنی مختلف گرافن اکسید آمینه شده، تهیه، و تحت آزمون کشش و آزمون برش خالص به منظور تعیین خواص کششی و برشی قرار گرفت. نتایج تحقیق نشان داد وجود گرافن اکسید عامل‌دار موجب بهبود خواص مکانیکی چسب می‌شود که در آن، نقطه بهینه این افزایش در نمونه‌های حاوی 0.1 درصد وزنی گرافن اکسید اصلاح سطحی بوده است. به طوری که افزودن این مقدار گرافن اکسید آمینه به چسب اپوکسی باعث افزایش 35%، %44، %53 و %34 به ترتیب در مدول الاستیسیته، استحکام نهایی، چقرمگی و مدول برشی چسب می شود.

کلیدواژه‌ها

موضوعات


[1]        Nadiim Domun N., Paton K. R.,  Hadavinia H. , Sainsbury T., Zhang T., Mohamud H., Enhancement of Fracture Toughness of Epoxy Nanocomposites by Combining Nanotubes and Nanosheets as Fillers, J. Materials, 10(10), 1179,1-17, 2017.
[2]        Jouyandeh M., Jazani O. M., Navarchian A. H. and Saeb M. R., High-Performance Epoxy-based Adhesives Reinforced With Alumina and Silica for Carbon Fiber Composite/Steel Bonded Joints, Journal of Reinforced Plastics and Composites, 35(23), 1685-1695, 2016.
[3]        Bahlakeh Gh., Ghaffari M., Saeb M. R., Ramezanzadeh B., De Proft F. and Terryn H., A Close-up of The Effect of Iron Oxide Type on The Interfacial Interaction Between Epoxy and Carbon Steel: Combined Molecular Dynamics Simulations and Quantum Mechanics, J. Phys. Chem. C, 120(13), 11014-11026, 2016.
[4]        Ghaffari M., Saeb M. R., Ramezanzadeh B. and Taheri P., Demonstration of Epoxy/Carbon Steel Interfacial Delamination Behavior: Electrochemical Impedance and X-ray Spectroscopic Analyses, Corr. Sci., 102(12), 326-337, 2016.
[5]        Thomas R., Yumei D., Yuelong H., Le Y., Moldenaers P., Weimin Y., Czigany T. and Thomasf S., Miscibility, morphology, thermal, and mechanical properties of aDGEBA based epoxy resin toughened with a liquid rubber, Polymer 49(17), 278–294, 2008.
[6]        Papageorgiou D. G.,  Li Z.,  Liu M.,  Kinloch I. A. and  Young R. J., Mechanisms of mechanical reinforcement by graphene and carbon nanotubes in polymer nanocomposites, Nanoscale, 12(40), 2228-2267, 2020.
[7]        Bailey E.J., Wine I., Dynamics of Polymer Segments, Polymer Chains, and Nanoparticles in Polymer Nanocomposite Melts: A Review, Progress in Polymer Science,2020.
doi.org/10.1016/j.progpolymsci.2020.101242
[8]        Vidya,  Mandal L., Verma B., Patel P. K., Review on polymer nanocomposite for ballistic & aerospace applications, materials today: proceedings, 2020.
[9]        Sanes J., Sánchez C., Pamies R., Avilés M. D. and Bermúdez M. D., Extrusion of Polymer Nanocomposites with Graphene and Graphene Derivative Nanofillers: An Overview of Recent Developments, Materials, 13(3), 549-551, 2020.
[10]     Khamseh S., Alibakhshi E., Mahdavian M., Saeb M. R., Vahabi H., Kokanyan N. and Laheurte P., Magnetron- Sputtered Copper/Diamond-like Composite Thin Films With Super anti-corrosion Properties, Surf. & Coat. Tech., 333(10), 148-157, 2018.
[11]     Bakhshandeh E., Jannesari A., Ranjbar Z., Sobhani S. and Saeb M.R., Anti-corrosion Hybrid Coatings Based on Epoxy–Silicanano-Composites: Toward Relationship Between The Morphology and EIS Data, Prog. Organ. Coat., 77(15), 1169-1183, 2014.
[12]     Ayatollahi M., Shadlou S. and Shokrieh M., Fracture toughness of epoxy/multi-walled carbon nanotube nanocomposites under bending and shear loading conditions, Mater. Des., 32(10), 2115–2124, 2011.
[13]     Ayatollahi M., Shadlou S. and Shokrieh M., Mixed mode brittle fracture in epoxy/multi-walled carbon nanotube nanocomposites, Eng. Fract. Mech., 78(13), 2620–2632, 2011.
[14]     Ayatollahi M. R., Shadlou S., Shokrieh M. M. and Chitsazzadeh M., Effect of multi-walled carbon nanotube aspect ratio on mechanical and electrical properties of epoxy-based nanocomposites, Polym. Test., 30(19), 548–556, 2011.
[15]     Gojny F. H., Wichmann M. H., Fiedler B. and Schulte K., Influence of different carbon nanotubes on the mechanicalproperties of epoxy matrix composites – A comparative study, Compos. Sci. Technol., 65(14), 2300–2313, 2005.
[16]     Khabaz Aghdam A., Behjat B., Da Silva L. F. M., and Marques E. A. S., A new theoretical creep model of an epoxy-graphene composite based on experimental investigation: effect of graphene content, Journal of Composite Materials, 2020.
[17]     Khabaz Aghdam A., Behjat B., Yazdani M., Da Silva L. F. M., Marques E. A. S. and Shang X., Creep behavior of a graphene-reinforced epoxy adhesively bonded joint: experimental and numerical investigation, The Journal of Adhesion, 2020.
[18]     Shivan A., and Ansari M. N. M., Mechanical properties of graphene oxide(GO)/epoxy composites. HBRC Journal, pp. 151–156, 2015.
[19]     Tang L. C., Wan Y. J., Yan D., Pei Y. B., Li Y. B., Wu L. B., Jiang J. X. and Lai G. Q., The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites, Carbon, 60(12), 16–27, 2013.
[20]     Bortz D. R., Heras E. G. and Ignacio M. G., Impressive Fatigue Life and Fracture Toughness Improvements in Graphene Oxide/Epoxy Composites, Macromolecules, 45(8), 238–245, 2012.
[21]     Hong B. J., Compton O. C., An Zh., Eryazici I. and Nguyen S.T., Successful Stabilization of Graphene Oxide in Electrolyte Solutions: Enhancement of Bio functionalization and Cellular Uptake, ACS nano, 6(11) , 63–73, 2012.
[22]     Li Z., Wang R., Young R. J., Deng L., Yang F., Hao L., Jiao W. and Liu W., Control of the functionality of grapheme oxide for its application in epoxy nanocomposites, Polymer, 54(10), 6437–6446, 2013.
[23]     Pokharel P., Pant B., Pokhrel K., Pant H. R., Lim J. G., Lee D. S., Kim H. Y. and Choi S., Effects of functional groups on the graphene sheet for improving the thermomechanical properties of polyurethane nanocomposites, Compos. Part B. Eng., 78, 192-201, 2015.
[24]     AN Giv, Ayatollahi M., Ghaffari SH. and Da Silva L. F. M., Effect of reinforcements at different scales on mechanical properties of epoxy adhesives and adhesive joints: a review. The Journal of Adhesion, 94 (13) ,1082-1121, 2018.
[25]     Kusar A., Anwar Z. and Muhammad B.: Recent Developments in Epoxy/Graphite, Epoxy/Graphene and Epoxy/Graphene Nanoplatelet Composites: A Comparative Review, Polymer-Plastics Technology and Engineering, 55(11), 1192-1210, 2016.
[26]     Roghani-Mamaqani H., Surface-initiated ATRP of styrene from epoxy groups of graphene nanolayers: twofold polystyrene chains and various graft densities, RSC Adv. 5(12), 53357–53368, 2015.
[27]     Domun N., Hadavinia H., Zhang T., Liaghat G., Vahid S., Spacie C., Paton K. R. and Sainsbury T., Improving the fracture toughness properties of epoxy using graphene nanoplatelets at low filler content, Nanocomposites, 3(3), 85-96, 2017.
[28]     Roghani-Mamaqani H. and Khezri K., A grafting from approach to graft polystyrene chains to the surface of graphene nanolayers by RAFTpolymerization: various graft densities from hydroxyl groups, Appl. Surf. Sci., 360(10), 373–382, 2016.
[29]     Roghani-Mamaqani H., Haddadi-Asl V., Sobhkhiz Z. and Ghaderi-Ghahfarrokhi M., Grafting poly (methyl methacrylate) from azo-functionalized grapheme nanolayers via reverse atom transfer radical polymerization, Colloid. Polym. Sci., 293(16), 735–750, 2015.
[30]     Roghani-Mamaqani H. and Khezri K., Polystyrene-attached graphene nanolayers by reversible addition-fragmentation chain transfer polymerization: agrafting from epoxy groups with various densities, J. Polym. Res., 23, 190, 2016.
[31]     Rafiee M. A.,  Rafiee J., Wang Z., Song H., Yu Z.   and Koratkar N., Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content, ACS NANO, 3(12), 3884–3890, 2009.
[32]     NF T 76-142. Methode de preparation de plaques d’adhesifs structuraux pour la realisation d’eprouvettes d’essai de caracterisation 1988.
[33]     da Silva L. F. M., Adams R. D. and Gibbs M., Manufacture of adhesive joints and bulk specimens with high-temperature adhesives, International Journal of Adhesion & Adhesives, 24(15), 69–83, 2004.
[34]     Dean G. and Duncan B., A Guide to the Preparation and Testing of Bulk Specimens of Adhesives, Measurement Good Practice Guide No. 17, Centre for Materials Measurement and Technology, 1998.
[35]     da Silva L. F.M., Dillard D. A., Blackman B., and Adams R. D., Testing Adhesive Joints: best practices. John Wiley & Sons, 2012.
[36]     Rudawska A. The Impact of the Seasoning Conditions on Mechanical Properties of Modified and Unmodified Epoxy Adhesive Compounds, Polymers, 11(5), 804-823, 2019.
[37]     da Silva L.F.M., Öchsner A., Adams R.D. (eds) Handbook of Adhesion Technology. Springer Science & Business Media, 2011.
[38]     ASTM D2651, Guide for Preparation of Metal Surfaces for Adhesive Bonding, 2004.
[39]     ASTM A 36/A 36M Standard Specification form Carbon Structural Steel.
[40]     ASTM D638 - 10, Standard Test Method for Tensile Properties of Plastics, D20.10, Ed. West Conshohocken, PA: ASTM International, 2011.
[41]     ISO 11003-2, Adhesives—determination of shear behavior of structural bonds—part 2: thick adherend tensile-test method. Geneva, Switzerland, 1999.
[42]     Gholipour-Mahmoudalilou M., Roghani-Mamaqani H., Azimi R., Abdollahi A., Preparation of hyperbranched poly (amidoamine)-grafted graphene nanolayers as a composite and curing agent for epoxy resin, Appl. Surf. Sci., 428(9) 1061–1069, 2018.
[43]     Hemmatpour H., Haddadi-Asl V. and Roghani-Mamaqani H., Synthesis of pH-sensitive poly (N,N-dimethylaminoethyl methacrylate)-grafted halloysitenanotubes for adsorption and controlled release of DPH and DS drugs, Polymer, 65, 143–153, 2015.
[44]     Roghani-Mamaqani H., Haddadi-Asl V., Khezri K., Zeinali E. and Salami-Kalajahi M., In situ atom transfer radical polymerization of styrene toIn-plane functionalize graphene nanolayers: grafting through hydroxylgroups, J. Polym. Res., 21, 333, 2014.
[45]     Roghani-Mamaqani H. and Haddadi-Asl V., In-Plane Functionalizing Graphene Nanolayers with Polystyrene by Atom Transfer Radical Polymerization: Grafting from Hydroxyl Groups, J. Polym. Res., 21, 333, 2014.
[46]     Atif R., Shyha I. and Inam F.,Mechanical, Thermal, and Electrical Properties of Graphene-Epoxy Nanocomposites (A Review), Polymers, 8, 281, 2016.