مطالعه اثر نرخ بارگذاری بر خواص کششی آلیاژ آلومینیوم و نانو کامپوزیت پایه آلومینیومی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، دانشکده مهندسی مکانیک، دانشگاه سمنان، سمنان، ایران

2 کارشناسی ارشد، دانشکده مهندسی مکانیک، دانشگاه سمنان، سمنان، ایران

3 استاد، دانشکده مهندسی مکانیک، دانشگاه سمنان، سمنان، ایران

چکیده

در این مقاله، اثر نرخ بارگذاری بر خواص کششی آلیاژ آلومینیوم- سیلیسیوم پیستون، با و بدون نانو ذرات سیلیکا، مورد مطالعه قرار گرفته است. بر روی نمونه­های ریخته­گری شده، آزمون کشش در نرخ­های مختلف بارگذاری انجام گرفت. سپس، داده های تجربی با استفاده از نرم­افزار Minitab، تحلیل حساسیت شده است. نتایج نشان می­دهد که با افزایش نرخ بارگذاری در نمونه­های بدون نانو، تنش تسلیم و درصد ازدیاد طول، به ترتیب، افزایش و کاهش می­یابد. تصاویر ریزساختار نیز، نشان می­دهد که نانو سیلیکا به سیلیسیوم زمینه آلیاژ، پیوسته و سیلیسیوم بیشتری در زمینه آلیاژ آلومینیوم دیده می­شود. اما ابعاد دانه­های سیلیسیوم در نانوکامپوزیت کوچکتر شده است. همچنین، تحلیل سطوح شکست مشخص نمود که افزایش نرخ بارگذاری در بارگذاری کششی و افزودن نانو ذرات، رفتار تردی شکست نمونه­ها را افزایش داده است.

کلیدواژه‌ها

موضوعات


[1]   Pistons and engine testing, MAHLE GmbH and Springer, 115-280, 2016.
[2]   Mazahery A. and Shabani M. O. Mechanical Properties of A356 Matrix Composites Reinforced with Nano-SiC Particles. Strength of Materials, Vol. 44, No. 6, pp. 686-692, 2012.
[3]   Akbari M. K., Baharvandi H. R. and Shirvanimoghaddam, K.  Tensile and Fracture Behavior of Nano/Micro TiB2 Particle Reinforced Casting A356 Aluminum Alloy Composites. Materials and Design, Vol. 1980-2015, No. 66, pp. 150-161, 2015.
[4]   Cavaliere P., Sadeghi B. and Shabani, A. Carbon Nanotube Reinforced Aluminum Matrix Composites Produced by Spark Plasma Sintering. Journal of Materials Science, Vol. 52, No. 14, pp. 8618-8629, 2017.
[5]   Chandrashekar A., Ajaykumar B. S. and Reddappa, H. N. Mechanical, Structural and Corrosion Behavior of AlMg4.5/nano Al2O3 Metal Matrix Composites. Materials Today: Proceedings, Vol. 5, No. 1, pp. 2811-2817, 2018.‏
[6]   Kang Y. C. and Chan, S. L. I. Tensile Properties of Nanometric Al2O3 Particulate-Reinforced Aluminum Matrix Composites. Materials Chemistry and Physics, Vol. 85, No. 2-3, pp. 438-443, 2014.‏
[7]   Raju P. R. M., Rajesh S., Raju K. S. R. and Raju, V. R. Effect of Reinforcement of Nano Al2O3 on Mechanical Properties of Al2024 NMMCs. Materials Today: Proceedings, Vol. 2, No. 4-5, pp. 3712-3717, 2015.‏
[8]   Beygi H., Sajjadi S. A. and Zebarjad, S. M. Microstructural Analysis and Mechanical Characterization of Aluminum Matrix Nanocomposites Reinforced with Uncoated and Cu-coated Alumina Particles. Materials Science and Engineering: A, Vol. 607, pp. 81-88, 2014.
[9]   Standard test method for analysis testing of aluminum and aluminum alloys by spark atomic emission spectrometry, ASTM-E1251-11, ASTM, 2011.
[10]              Han G., Zhang W., Zhang G., Feng Z. and Wang, Y. High-Temperature Mechanical Properties and Fracture Mechanisms of Al-Si Piston Alloy Reinforced with in Situ TiB2 Particles. Materials Science and Engineering: A, Vol. 633, pp. 161-168, 2015.
[11]              El-Labban, H. F., Abdelaziz and M., Mahmoud, E. R. Preparation and Characterization of Squeeze Cast Al-Si Piston Alloy Reinforced by Ni and Nano-Al2O3 Particles. Journal of King Saud University-Engineering Sciences, Vol. 28, No. 2, pp. 230-239, 2016.‏
[12]              Mahboob H., Sajjadi S. A. and Zebarjad, S. M. Influence of Nanosized Al2O3 Weight Percentage on Microstructure and Mechanical Properties of Al-Matrix Nanocomposite. Powder Metallurgy, Vol. 54, No. 2, pp. 148-152, 2011.
[13]              Hemanth J. Quartz (SiO2p) Reinforced Chilled Metal Matrix Composite (CMMC) for Automotive Applications. Materials and Design, Vol. 30, No. 2, pp. 323-329, 2009.
[14]              Akbari M. K., Mirzaee O., and Baharvandi, H. R. Fabrication and Study on Mechanical Properties and Fracture Behavior of Nanometric Al2O3 Particle-Reinforced A356 Composites Focusing on The Parameters of Vortex Method. Materials and Design, Vol. 46, pp. 199-205, 2013.‏
[15]              Su H., Gao W., Feng Z. and Lu, Z. Processing, Microstructure and Tensile Properties of Nano-Sized Al2O3 Particle Reinforced Aluminum Matrix Composites. Materials and Design, Vol. 36, pp. 590-596, 2012.‏
[16]              Velmurugan T., Kumar K. S., Vivek S. and Krishnan G. Y.  Nanoparticles Reinforced Aluminum Composites: A Review. International Journal for Science and Advance Research in Technology, Vol. 3, No. 4, pp. 5-11, 2017. ‏
[17]              Kandpal B. C. and Singh H. Fabrication and Characterization of Al2O3/Aluminum Alloy 6061 Composites Fabricated by Stir Casting. Materials Today: Proceedings, Vol. 4, No. 2, pp. 2783-2792, 2017.
[18]              Ezatpour H. R., Sajjadi S. A., Sabzevar M. H. and Huang, Y. Investigation of Microstructure and Mechanical Properties of Al6061-Nanocomposite Fabricated by Stir Casting. Materials and Design, Vol. 55, pp. 921-928, 2014.
[19]              Hamedan A. D. and Shahmiri, M. Production of A356-1 wt% SiC Nanocomposite by The Modified Stir Casting Method. Materials Science and Engineering: A, Vol. 556, pp. 921-926, 2012.
[20]              Sekar K., Allesu K. and Joseph M. A. Effect of T6 Heat Treatment in The Microstructure and Mechanical Properties of A356 Reinforced with Nano Al2O3 Particles by Combination Effect of Stir and Squeeze Casting. Procedia Materials Science, Vol. 5, pp. 444-453, 2014.‏
[21]              Senthilkumar V., Balaji A. and Ahamed, H. Effect of Secondary Processing and Nanoscale Reinforcement on The Mechanical Properties of Al-TiC Composites. Journal of Minerals and Materials Characterization and Engineering, Vol. 10, No. 14, pp. 1293-1306, 2011.‏
[22]              Azadi M., Zolfaghari M., Rezanezhad S. and Azadi, M. Effects of SiO2 Nano-particles on Tribological and Mechanical Properties of Aluminum Matrix Composites by Different Dispersion Methods. Applied Physics: A, Vol. 124, No. 5, Article No. 377, 2018.
[23]              Mazahery A., Abdizadeh H. and Baharvandi H. R. Development of High-Performance A356/nano-Al2O3 Composites. Materials Science and Engineering: A, Vol. 518, No. 1-2, pp. 61-64, 2009.‏
[24]              Soltani S., Khosroshahi R. A., Mousavian R. T., Jiang Z. Y., Boostani A. F. and Brabazon, D. Stir Casting Process for Manufacture of Al-SiC Composites. Rare Metals, Vol. 36, No. 7, pp. 581-590, 2017.‏
[25]              Azadi M., Safarloo S., Loghman F. and Rasouli, R. Microstructural and Thermal Properties of Piston Aluminum Alloy Reinforced by Nano-particles. AIP Conference Proceedings, Vol. 1920, No. 1, Article No. 020027, 2018.
[26]              Rincon E., Lopez H. F., Cisneros M. M. and Mancha, H. Temperature Effects on The Tensile Properties of Cast and Heat-Treated Aluminum Alloy A319. Materials Science and Engineering: A, Vol. 519, No. 1-2, pp. 128-140, 2009.
[27]              Kiepura R. T. and Sanders, B. R. ASM handbook: Metallography and microstructures. ASM International, 1985.‏
[28]              Issa H. K., Taherizadeh A., Maleki and A., Ghaei, A. Development of An Aluminum/Amorphous Nano-SiO2 Composite using Powder Metallurgy and Hot Extrusion Processes. Ceramics International, Vol. 43, pp. 14582-14592, 2017.
[29]              Standard test methods for tension testing of metallic materials, ASTM-E8M-04, ASTM, 2004.
[30]              Azadi M., Iziy M., Marbout A., Azadi M. and Hajiali Mohammadi, A. Optimization of Solution Temperature and Time in Nickel-based Superalloy of Engine Turbo-Charger based on Hardness by Design of Experiment. The Journal of Engine Research, Vol. 43, pp. 63-70, 2016.‏‏
[31]              Montgomery D. C., Design and analysis of experiments. John Wiley and Sons, 2009.‏‏
[32]              Azadi M., Analysis and improvement of a passenger car NVH behavior using DOE method, MSc Thesis, K.N. Toosi University of Technology, 2008.
[33]              Azadi M., Alizadeh M. and Sayar H. Sensitivity Analysis for Effects of Displacement Amplitude and Loading Frequency on Low-Cycle Fatigue Lifetime in Carbon/Epoxy Laminated Composites. MATEC Web of Conferences, Vol. 165, Article No. 22021, 2018.
[34]              Li L., Flores-Johnson E. A., Shen L. and Proust, G. Effects of Heat Treatment and Strain Rate on The Microstructure and Mechanical Properties of 6061 Al Alloy. International Journal of Damage Mechanics, Vol. 25, No. 1, pp. 26-41, 2016.‏
[35]              Higashi K., Mukai T., Kaizu K., Tsuchida S. and Tanimura S. Strain Rate Dependence on Mechanical Properties in Some Commercial Aluminum Alloys. Le Journal de Physique, Vol. 1, Article No. 341, 1991.‏
[36]              Senthil K., Iqbal M. A., Chandel P. S. and Gupta, N. K. Study of The Constitutive Behavior of 7075-T651 Aluminum Alloy. International Journal of Impact Engineering, Vol. 108, pp. 171-190, 2017.‏
[37]              Hossain A. and Kurny A. Effects of Strain Rate on Tensile Properties and Fracture Behavior of Al-Si-Mg Cast Alloys with Cu Contents. Materials Science and Metallurgy Engineering, Vol. 1-2, pp. 27-30, 2013.‏
[38]              Benzing J. T., Poling W. A., Pierce D. T., Bentley J., Findley K. O., Raabe D. and Wittig, J. E. Effects of Strain Rate on Mechanical Properties and Deformation Behavior of An Austenitic Fe-25Mn-3Al-3Si TWIP-TRIP Steel. Materials Science and Engineering: A, Vol. 711, pp. 78-92, 2018‏
[39]              Wang W., Ma Y., Yang M., Jiang P., Yuan F. and Wu, X. Strain Rate Effect on Tensile Behavior for A High Specific Strength Steel: From Quasi-Static to Intermediate Strain Rates. Metals, Vol. 8, No. 1, Article No. 11, 2017.‏‏
[40]              Huang G., Yan B. and Zhu H. The effect of strain rate on tensile properties and fracture strain. In Great Design in Steel Seminar, Livonia, 2011.
[41]              Dieter G. E. and Bacon D. J., Mechanical metallurgy, McGraw-Hill, 1986.