شبیه‌سازی، تحلیل و بهینه‌سازی ترمودینامیکی دو چرخه جدید ترکیبی توان-تبرید با استفاده از انرژی کرایجونیک LNG

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجو دکترا، گروه تبدیل انرژی، دانشگاه شهید بهشتی، تهران، ایران

2 دانشیار، گروه سیستم‌های انرژی، دانشگاه شهید بهشتی، تهران، ایران

3 استادیار، گروه انرژی های‌تجدیدپذیر، دانشگاه شهید بهشتی، تهران، ایران

4 استادیار، گروه مهندسی مکانیک، دانشگاه بین‌المللی امام خمینی، قزوین، ایران

چکیده

در مطالعه حاضر برای استفاده بهینه از انرژی کرایجونیک LNG و کاهش تلفات اگزرژی ناشی از اختلاف دمای بالا در فرایند انتقال گرما، دو چرخه جدید ترکیبی توان-تبرید معرفی گردید. چرخه­های ترکیبی جدید شامل یک چرخه تبرید تراکمی-اجکتوری و دو چرخه رانکین با فشار کاری پایین و بالا می­باشد که در آن توان مورد نیاز کمپرسور چرخه تبرید تراکمی-اجکتوری توسط توان تولیدی در توربین­های دو چرخه رانکین تامین می­شود.  از مزایای دو چرخه جدید ترکیبی می­توان به افزایش انرژی سرمایی کسب شده در مقایسه با تبخیر مستقیم LNG اشاره نمود. با استفاده از قوانین اول و دوم ترمودینامیک و فرض مدل سطح ثابت برای اجکتور تحلیل ترمودینامیکی و همچنین بهینه­سازی برای هر دو چرخه جدید ترکیبی توان-تبرید انجام شد. با تحلیل پارامترهای طراحی مشاهده شد که با افزایش فشار تخلیه پمپ و کاهش فشار خروجی توربین چرخه رانکین فشار پایین راندمان گرمایی بیشینه، راندمان اگزرژی بیشینه و نسبت افزایش انرژی سرمایی در هر دو چرخه جدید ترکیبی توان-تبرید افزایش می­یابد. با انجام بهینه­سازی در مرزهای تعیین شده برای پارامترهای طراحی، بیشینه راندمان گرمایی و راندمان اگزرژی در چرخه І به ترتیب برابر %31/77 و %69/23، و در چرخه ІІ %49/87 و 95%/23 شد همچنین بیشترین نسبت افزایش انرژی سرمایی قابل کسب  نسبت به تبخیر مستقیم LNG، در دو چرخه І و ІІ به ترتیب %37/63 و %9/73 بدست آمد.

کلیدواژه‌ها

موضوعات


[1]     Kanbur B., Xiang L., Dubey S., Choo F. and Duan F., Cold utilization systems of LNG: A review. Renewable and Sustainable Energy Reviews, Vol. 79, pp. 1171–1188, 2017.
[2]     International Energy Agency., World energy outlook. 2012.
[3]     Al-musleh EI., Mallapragada DS. and Agrawal R., Efficient electrochemical refrigeration power plant using natural gas with 100% CO2 capture. J. Power Sources, Vol. 274, pp. 130–141, 2015.
[4]     Wang P., Chung TS., A conceptual demonstration of freeze desalination-membrane distillation (FD-MD) hybrid desalination process utilizing liquefied natural gas (LNG) cold energy. Water Research, Vol. 46(13), pp. 4037–4052, 2012.
[5]     Dorosz P., Wojcieszak P., Malecha Z., Exergetic Analysis, Optimization and Comparison of LNG Exergy Recovery Systems for Transportation. Entropy, Vol. 20(1), pp. 1-18, 2018.
[6]     Franco A., Casarosa C., Thermodynamic analysis of direct expansion configurations for electricity production by LNG cold energy recovery. Applied Thermal Eng., Vol. 78, pp. 649–657, 2015.
[7]     Szargut J., Szczygiel I., Utilization of the cryogenic exergy of liquid natural gas (LNG) for the production of electricity. Energy, Vol. 34, pp. 827-837, 2009.
[8]     Wang H., Shi X., Che D., Thermodynamic optimization of the operating parameters for a combined power cycle utilizing low-temperature waste heat and LNG cold energy. Applied Thermal Eng., Vol. 59, pp. 490-497, 2013.
[9]     Arsalis A., Alexandrou A., Thermoeconomic modeling and exergy analysis of a decentralized liquefied natural gas-fueled combined-cooling-Heating-and-power plant. J Nat Gas Science and Eng., Vol. 21, pp. 209–220, 2014.
[10]  Ferreira P. A., Catarino I., Vaz D., Thermodynamic analysis for working fluids comparison in Rankine-type cycles exploiting the cryogenic exergy in Liquefied Natural Gas (LNG) regasification. Applied Thermal Eng., Vol. 121, pp. 887-896, 2017.
[11]   Dhameliya H., Agrawal P., LNG Cryogenic Energy Utilization. Energy Procedia, Vol. 90, pp. 660-665, 2016.
[12]   Bao J., Lin Y., Zhang R., Zhang N. and He G., Effects of stage number of condensing process on the power generation systems for LNG cold energy recovery. Applied Thermal Eng., Vol. 126, pp. 566-582, 2017.
[13]  Liu Y., Ding Y., Wang H. and Wang Y., Thermodynamics Analysis of a Novel Cryogenic Power Cycle for LNG Cold Energy Recovery with Binary Mixture as Working Fluid. Engineering Procedia, Vol. 205, pp. 1946-1951, 2017.
[14]  Zhang G., Zheng J., Yang Y., A novel LNG cryogenic energy utilization method for inlet air cooling to improve the performance of combined cycle. Applied Energy, Vol. 179, pp. 638-649, 2016.
[15]  Chen Y., Gu J., The optimum high pressure for CO2 transcritical refrigeration systems with internal heat exchangers. International Journal of Refrigeration, Vol. 28, pp. 1238-1249, 2005.
[16]  Klein SA, Alvarda F., Engineering equation solver (EES). WI: F-chart Softwar, 2007.
[17]  Yari M., Performance analysis and optimization of a new two-stage ejector expansion transcritical CO2 refrigeration cycle. International Journal of Thermal Sciences, Vol. 48, pp. 1997-2005, 2009.
[18] Yari M., Second law optimization of two-stage transcritical CO2 refrigeration cycles in the cooling mode operation. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, Vol. 223, pp. 551-561, 2009.
[19]  Yari M., Mahmoudi S. M. S., Thermodynamic analysis and optimization of novel ejector-expansion TRCC (transcritical CO2) cascade refrigeration cycles. Energy, Vol. 36, pp. 6839-6850, 2011.
[20]  Aghazadeh D., Setayesh Hagh A., Mahmoudi S. M. S., Thermodynamic investigation and optimization of novel ejector-expansion CO2/NH3 cascade refrigeration cycles (novel CO2/NH3 cycle). Int. J. of Refrigeration, Vol. 46, pp. 26-36, 2014.
[21] Aghazadeh D., Mahmoudi S. M. S., Bidi M., Haghighi Khoshkhoo R. and Rosen M., First and Second Law Analyses of Trans-critical N2O Refrigeration Cycle Using an Ejector. MDPI Sustainability, Vol. 10(4):1177, pp. 1-14, 2018.