تحلیل دینامیکی رفتار یک فعال ساز ابتکاری بر پایه رفتار ماده مغناطوکشسان

نوع مقاله : پژوهشی کامل

نویسندگان

1 کارشناسی ارشد، گروه مهندسی مکانیک، دانشگاه صنعتی ارومیه، ارومیه، ایران

2 دانشیار، گروه مهندسی مکانیک، دانشگاه صنعتی ارومیه، ارومیه، ایران

3 استادیار، گروه مهندسی مکانیک، دانشگاه صنعتی ارومیه، ارومیه، ایران

چکیده

در این مقاله تحلیل دینامیکی رفتار یک فعال­ساز برپایه پدیده مغناطوکشسانی معرفی شده­است. این مدل شامل یک تیر یک سر گیردار است که از فولاد تشکیل شده است و یک لایه متگلس 2650SC به عنوان ماده مغناطوکشسان روی آن قرار داده شده­است. این تیر زمانی که در یک میدان آهنربایی قرار گیرد به علت تغییر ساختار داخلی لایه مغناطوکشسان بر اثر اعمال میدان آهنربایی، دچار تغییر شکل و خمش می­شود که از این تغییر شکل برای عملیات فعال­سازی استفاده می­شود. در این مقاله معادلات حرکت سیستم با استفاده از نظریه غیرخطی تیر اویلر-برنولی و روش نیوتن استخراج شده است. بر این اساس رفتار دینامیکی مدل فعال ساز پیشنهادی و رابطه بین موقعیت سر تیر تحت تاثیر میدان آهنربایی و نیز تاثیر ضریب میرایی تیر بر پاسخ گذرا و جای گیری مکان انتهای تیر بررسی گردیده است. مدل ارایه شده در این مقاله نیازی به هیچ­گونه ادوات راه­انداز ندارد و می­توان از آن به صورت از راه دور استفاده کرد، معادلات دینامیکی به دست آمده در این تحقیق نیز، می­تواند به عنوان ابزاری برای طراحی فعال­سازها استفاده شود.

کلیدواژه‌ها

موضوعات


[1]     Wilson S. A., Jourdain R. P., Zhang Q., Dorey R. A., Bowen C. R., Willander M., Wahab Q. U., Al-hilli S. M., Nur O., Quandt E., Johansson C., Pagounis E., Kohl M., Matovic J., Samel B., Wijngaart W., Jager E. W. H., Carlsson D., Djinovic Z., Wegener M., Moldovan C., Iosub R., Abad E., Wendlandt M., Rusu C. and Persson K., New Materials for Micro-scale Sensors and Actuators. Materials Science and Engineering, R Reports,Vol. 56, No. 1, pp. 1-129, 2007.
[2]     Asaka K. and Okuzaki H. O., Soft Actuators: materials, modeling, applications, and future perspectives. Springer Japan, Tokyo, 2014.
[3]     Wang Q. M. and Cross L. E., Performance analysis of piezoelectric cantilever bending actuators. Ferroelectrics, Vol. 215, No. 1, pp. 187-213, 1998.
[4]     King T. G., Preston M. E., Murphy B. J. M. and Cannell D. S., Piezoelectric ceramic actuators: A review of machinery applications. Precision Engineering, Vol. 12, No. 3, pp. 131-136, 1990.
[5]     Choi H. R., Ryew S., Jung K. M., Kim H. M., Jeon J. W., Nam J. D., Maeda R. and Tanie K., Soft actuator for robotic applications based on dielectric elastomer: quasi-static analysis. Proceedings IEEE International Conference on Robotics and Automation, Washington, DC, USA, 2002.
[6]     O’Halloran A., O’Malley F. and McHugh P., A review on dielectric elastomer actuators, technology, applications, and challenges. Journal of Applied Physics, Vol. 104, No. 7, pp. 071101, 2008.
[7]     Icardi U., Large bending actuator made with SMA contractile wires: theory, numerical simulation and experiments. Composites Part B: Engineering, Vol. 32, No. 3, pp. 259-267, 2001.
[8]     Olabi A. G. and Grunwald A., Design and application of magnetostrictive materials. Materials & Design, Vol. 29, No. 2, pp. 469-483, 2008.
[9]     Arani A. G., Maraghi Z. K. and H. K. Arani, Vibration control of tapered magnetostrictive plate considering shear correction factor. Scientia Iranica. Transaction B, Mechanical Engineering, Vol. 23, No.4, pp. 1741, 2016.‏
[10] Arani A. G., Maraghi Z. K. and Arani H. K., Vibration control of magnetostrictive plate under multi-physical loads via trigonometric higher order shear deformation theory. Journal of Vibration and Control, Vol. 23, No. 19, pp. 3057-3070, 2017.‏
[11] Ueno T. and Higuchi T., Two-DOF Micro Magnetostrictive Bending Actuator for Wobbling Motion. IEEE Transactions on Magnetics, Vol. 44, No. 11, pp. 4078-4080, 2008.
[12] Tan X. and Baras J. S., Modeling and control of hysteresis in magnetostrictive actuators. Automatica, Vol. 40, No. 9, pp. 1469-1480, 2004.
[13] Grunwald A. and Olabi A. G., Design of a magnetostrictive (MS) actuator. Sensors and Actuators A: Physical, Vol. 144, No. 1, pp. 161-175, 2017.
[14] Kumar J. S., Ganesan N., Swarnamani S. and Padmanabhan C., Active control of beam with magnetostrictive layer. Computers & Structures, Vol. 81, No. 13, pp. 1375-1382, 2003.
[15] Karunanidhi S. and Singaperumal M., Design, analysis and simulation of magnetostrictive actuator and its application to high dynamic servo valve. Sensors and Actuators A: Physical, Vol. 157, No. 2, pp. 185-197, 2010.
[16] Nayfeh A. H., Linear and nonlinear structural mechanics. John Wiley & Sons, New York, 2004.
[17] Younis M. I., Mems linear and nonlinear statics and dynamics. Springer Science & Business Media, New York, 2014.
[18] Cain M. G. and Stewart M., Characterisation of ferroelectric bulk materials and thin films. Springer, New York, 2014.
[19] Azizi S., Ghazavi M. R., Rezazadeh G., Ahmadian I. and Cetinkaya C., Tuning the Trimary Resonances of a Micro Resonator using Piezoelectric Actuation. Nonlinear Dynamics, Vol. 76, No. 1, pp. 839-852, 2013.