[1] Potts JR, Dreyer DR, Bielawski CW, Ruoff RS., Graphene-based polymer nanocomposites. Polymer, Vol. 52, No.1, pp. 5-25, 2011.
[2] Rafiee MA, Rafiee J, Wang Z, Song H, Yu Z-Z, Koratkar N., Enhanced mechanical properties of nanocomposites at low graphene content. ACS nano. Vol. 3, No.12, pp. 3884-90, 2009.
[3] Kitipornchai S, He X, Liew K. Continuum model for the vibration of multilayered graphene sheets. Physical Review B. Vol. 72, No.7, pp. 075443, 2005.
[4] Xie S, Liu Y, Li J., Comparison of the effective conductivity between composites reinforced by graphene nanosheets and carbon nanotubes. Applied Physics Letters. Vol. 92, No.24, pp. 243121, 2008.
[5] Yang B, Yang J, Kitipornchai S. Thermoelastic analysis of functionally graded graphene reinforced rectangular plates based on 3D elasticity. Meccanica. Vol. 52, No.10, pp. 2275-92, 2017.
[6] Lin HG, Cao DQ, Xu YQ. Vibration, Buckling and Aeroelastic Analyses of Functionally Graded Multilayer Graphene-Nanoplatelets-Reinforced Composite Plates Embedded in Piezoelectric Layers. International Journal of Applied Mechanics. Vol. 10, No.03, pp. 1850023, 2018.
[7] Feng C, Kitipornchai S, Yang J. Nonlinear bending of polymer nanocomposite beams reinforced with non-uniformly distributed graphene platelets (GPLs). Composites Part B: Engineering. Vol. 40, No.03, pp. 110:132, 2017.
[8] میری م. وجشنانی ح.، تحلیل ارتعاشات نانو ورق گرافنی تک لایه دایروی تحت اثر اختلاف دما در محیط حرارتی. مجلۀمهندسی مکانیک مدرس، د. 18، ش. 5، ص 67-75، 1397.
[9] Malekzadeh P, Setoodeh A, Shojaee M. Vibration of FG-GPLs eccentric annular plates embedded in piezoelectric layers using a transformed differential quadrature method. Computer Methods in Applied Mechanics and Engineering. Vol. 79, No.05, pp. 340:451, 2018.
[10] Reddy J, Wang C, Kitipornchai S. Axisymmetric bending of functionally graded circular and annular plates. European Journal of Mechanics-A/Solids. Vol. 18, No.02, pp. 185-99, 1999.
[11] Alibeigloo A. Thermo elasticity solution of sandwich circular plate with functionally graded core using generalized differential quadrature method. Composite Structures. Vol. 40, No.15, pp. 136:229, 2016.
[12] Dong C. Three-dimensional free vibration analysis of functionally graded annular plates using the Chebyshev–Ritz method. Materials & Design. Vol. 29, No.8, pp. 1518-25, 2008.
[13] Tajeddini V, Ohadi A, Sadighi M. Three-dimensional free vibration of variable thickness thick circular and annular isotropic and functionally graded plates on Pasternak foundation. International Journal of Mechanical Sciences. Vol. 53, No.4, pp. 300-8, 2011.
[14] Alibeigloo A, Jafarian H. Three-Dimensional Static and Free Vibration Analysis of Carbon Nano Tube Reinforced Composite Cylindrical Shell Using Differential Quadrature Method. International Journal of Applied Mechanics. Vol. 08, No.03, pp. 1650033, 2016.
[15] Bisheh, H. and Alibeigloo, A., Static analysis of graphene reinforced composite circular plate. The 27th Annual International Conference of Iranian Society of Mechanical Engineers-ISME2019. 30 April- 2 May, 2019.
[16] Yang B, Kitipornchai S, Yang Y-F, Yang J. 3D thermo-mechanical bending solution of functionally graded graphene reinforced circular and annular plates. Applied Mathematical Modelling. Vol. 49, No.03, pp. 69-86, 2017.
[17] بدرود م. ،هاشمی ش. و ناظمزاده ر.، کمانش متقارن و نامتقارن نانوورقهای دایروی و حلقی در فضای غیرمحلی الاستیسیته. مجلۀمهندسی مکانیک مدرس، د. 13، ش. 5، ص 144-152، 1392.
[18] ملاعلی پور م.، تحلیل خمشی ورقهای دایرهای و حلقوی مدرج تابعی با تغییرات پلهای ضخامت با استفاده از یک حل دقیق فرم بسته جدید. مجلۀ مهندسی مکانیک دانشگاه تبریز، د. 47، ش. 2، ص 295-302، 1396.
[19] Affdl JH, Kardos J., The Halpin‐Tsai equations: a review. Polymer Engineering & Science. Vol. 16, No.05, pp. 344-52, 1976.
[20] Feng, C., Kitipornchai, S. and Yang, J., Nonlinear free vibration of functionally graded polymer composite beams reinforced with graphene nanoplatelets (GPLs). Engineering Structures, Vol.140, pp.110-119, 2017.
[21] Shu C, Richards BE. Application of generalized differential quadrature to solve two‐dimensional incompressible Navier‐Stokes equations. International Journal for Numerical Methods in Fluids. Vol. 15, No.07, pp. 791-8, 1992.
[22] Tornabene, F., Viola, E. and Inman, D.J., 2-D differential quadrature solution for vibration analysis of functionally graded conical, cylindrical shell and annular plate structures. Journal of Sound and Vibration, Vol. 328, No.03, pp. 259-290, 2009.