[1] Cuevas-Diarte M.A., Calvet-Pallas T., Tamarit J.L., Oonk H.A.J., Mondieig D., Haget Y., Nuevos materials termo adjustable, Mundo Cientifico, 2000.
[2] Pal D., Joshi Y., Application of Phase Change Materials for Passive Thermal Control of Plastic Quad Flat Packages, a computational study, Numerical Heat Transfer, Part A Applications, Vol. 30, p.p. 19-34, 1996.
[3] Cabeza L.F., Roca J., Nogues M., Zalba B., Marın J.M., Transportation and Conservation of Temperature Sensitive Materials with Phase Change Materials, State of the Art. IEA ECES IA Annex 17 2nd Workshop, Ljubljana (Slovenia), 2002.
[4] Koschenz M., Lehmann B., Development of a Thermally Activated Ceiling Panel with PCM for application in lightweight and Retrofitted Buildings, Energy and buildings, Vol. 36, p.p. 567-578, 2002.
[5] Vasiliev L.L., Burak V.S., Kulakov A.G., Mishkinis D.A., Bohan P.V., Latent Heat Storage Modules for Preheating Internal Combustion Engines, Application to a Bus Petrol Engine, Applied Thermal Engineering, Vol. 20, p.p. 913-923, 2000.
[6] Telkes M., Raymond E., Storing Solar Heat in Chemicals-a Report on the Dover House, Heat Vent, Vol. 46, No. 11, p.p. 80-86, 1949.
[7] Barkmann H.G., Wessling F.C., Use of Buildings Structural Components for Thermal Storage, Proceedings of the Workshop on Solar Energy Storage Subsystems for the Heating and Cooling of Buildings, Charlottesville,Virginia, USA, 1975.
[8] Sokolov M., Keizman Y., Performance Indicators for Solar Pipes with Phase Change Storage, Solar Energy, Vol. 4, p.p. 339-346, 1991.
[9] Zalba B., Marın J.M., Cabeza L.F., Mehling H., Review on thermal energy storage with phase change materials, heat transfer analysis and applications, Applied Thermal Engineering, Vol. 23, p.p. 251-283, 2003.
[10] Agyenim F., Eames P., Smyth M., Heat Transfer Enhancement in Medium Temperature Thermal Energy Storage System Using a Multitube Heat Transfer Array, Renewable Energy,Vol.35, p.p. 198-207, 2010.
[11] Longeon M., Soupart A., Fourmigue J.F., Bruch A., Marty P., Experimental and Numerical Study of Annular PCM Storage in the Presence of Natural Convection, Applied Energy,Vol. 112, p.p.175-184, 2013.
[12] Khodadadi J.M., Zhang Y., Effects of Buoyancy-Driven Convection on Melting within Spherical Containers, International Journal of Heat and Mass Transfer, Vol. 44, p.p. 1605-1618, 2001.
[13] Medrano M., Yilmaz M.O., Nogues M., Martorell I., Joan Roca, Cabeza Luisa F., Experimental Evaluation of Commercial Heat Exchangers for Use as PCM Thermal Storage Systems, Applied Energy, Vol.86, p.p. 2047–2055, 2009.
[14] Sari A., Kaygusuz K., Thermal and heat transfer characteristics in latent heat storage system using lauric acid, Energy Conversion and Management.43, P.P. 2493–2507, 2002.
[15] Tao Y.B., He Y.L., Numerical Study on Thermal Energy Storage Performance of Phase Change Material Under Non- Steady-State Inlet Boundary, Applied Energy Vol. 8, P.P. 4172-4179, 2011.
[16] Yusuf Yazici M., Avci M., Aydin O., Akgun M., On the Effect of Eccentricity of Horizontal Tube-in-Shell Storage nit on Solidification of PCM, Applied Thermal Engineering, Vol. 64, p.p. 1-9, 2014.
[17] Ismail K.A.R, Lino F.A.M, da Silva R.C.R, de Jesus A.B, Paixao L.C, experimentally validated two-dimensional numerical model for the solidification of PCM along a horizontal long tube, International Journal of Thermal Sciences, Vol. 75, P.P. 184-193, 2014
[18] کارگر م. و بنی اسدی الف.، تحلیل عملکرد مبادلهکن گرمایی فوق گرمایش در سیستم ذخیرهسازی انرژی گرمایی نیروگاه خورشیدی بخارمستقیم. مجلۀ مهندسی مکانیک دانشگاه تبریز ، د. 48، ش. 1، ص 298-306، 1397.
[19] میرزاییضیاپور ب. و هشترودی اصل الف.، تأمین انرژی گرمایشی سالیانه نوع جدیدی از گلخانههای خورشیدی با استفاده از بازتابندههای NIR و ذخیرهساز حرارتی حاوی PCM. مجلۀ مهندسی مکانیک دانشگاه تبریز، د. 46، ش. 3، ص 231-236، 1395.
[20] Esapour M., Hamzehnezhad A., Rabienataj Darzi A. A., Jourabian M., Melting and solidification of PCM embedded in porous metal foam in horizontal multi-tube heat storage system, Energy Conversion and Management, Vol. 171, P.P. 398–410, (2018)
[21] Mahdi J.M., Nsofora E.C., Solidification enhancement of PCM in a triplex-tube thermal energy storage system with nanoparticles and fins, Applied Energy, Vol. 211, P.P. 975–986, (2018).
[22] Rubitherm Technologies GmbH
[23] Brent A.D., Voller V.R., Reid K.J., Enthalpy-porosity Technique for Modeling convection diffusion phase change: application to the melting of pure metal, Numerical Heat Transfer, Vol. 13, P.P. 297-318, 1988.
[24] Voller V.R. and Prakash C., Fixed Grid Numerical Modeling Methodology for Convection-Diffusion Mush Region Phase Change Problems, International Journal of Heat and Mass Transfer, Vol. 30, No. 4, P.P. 1709-1719. 1987.
[25] N. Wakao, S. Kaguei, “Heat and mass transfer in packed beds”, New York, Gordon and Breach Science Publishers, 1982, p.p. 175–205.
[26] Mat S., Al-Abidi A. A., Sopian K., Sulaiman M. Y., Mohammad A. Th., Enhance Heat Transfer for PCM Melting in Triplex Tube with Internal-External Fin, Energy Conversion and Management, Vol. 74, p.p. 223-236, 2013