[1] Varga Z. and Palotai B., Comparison of low temperature waste heat recovery methods. Energy, Vol.137, pp. 1286-1292, 2017.
[2] Heywood J.B.J.E.E.U., Combustion engine fundamentals. McGrow-Hill, New York, 1988.
]3[ غائبی ه.، یاری م. و قوامی گرگری س.، شبیهسازی یک سیستم نوین تولید یکپارچه هیدروژن و توان با تلفیق چرخه ORC و سیستم ریفرمینگ بخار آب زیست گاز خورشیدی. مجلۀ مهندسی مکانیک دانشگاه تبریز، د. 49، ش. 2، ص 189-198، 1398.
[4] Lu Y., Roskilly A.P., and Yu X., The Development and Application of Organic Rankine Cycle for Vehicle Waste Heat Recovery, in Organic Rankine Cycle Technology for Heat Recovery., IntechOpen, United Kingdom, 2018.
[5] Ge Z., et al., Thermodynamic performance analyses and optimization of dual-loop organic Rankine cycles for internal combustion engine waste heat recovery. Applied sciences, Vol.9, No.4, pp. 680-703, 2019.
[6] Safarian S. and Aramoun F., Energy and exergy assessments of modified Organic Rankine Cycles (ORCs). Energy reports, Vol.1, pp. 1-7, 2015.
[7] Liu P., Shu G. and Tian H.J.E., How to approach optimal practical Organic Rankine cycle (OP-ORC) by configuration modification for diesel engine waste heat recovery. Energy, Vol.174, pp. 543-552, 2019.
[8] Neto R.d.O., et al., Technical and economic analyses of waste heat energy recovery from internal combustion engines by the Organic Rankine Cycle. Energy Conversion and Management, Vol. 129, pp. 168-179, 2016.
]9[ دیمی دشت بیاض م. و محمدی س.، بررسی انرژی و اگزرژی و بهبود چرخه رانکین آلی برای بازیافت گرمای تلف شده. مجلۀ مهندسی مکانیک دانشگاه تبریز، د. 48، ش. 4، ص 153-161، 1397.
[10] Ho T., Mao S.S. and Greif R., Increased power production through enhancements to the Organic Flash Cycle (OFC). Energy, Vol. 45, No.1, pp. 686-695, 2012.
[11] Ajimotokan H., A study of Trilateral Flash Cycles for Low-Grade Waste Heat Recovery-To-Power Generation. PhD. Thesis, Cranfield University, School of Engineering. Energy and Power Engineering Division, 2014.
[12] Fischer J., Comparison of trilateral cycles and organic Rankine cycles. Energy, Vol.36, No.10, pp. 6208-6219, 2011.
[13] Zamfirescu C. and Dincer I., Thermodynamic analysis of a novel ammonia–water trilateral Rankine cycle. Thermochimica Acta, Vol.477, No. 1-2, pp. 7-15, 2008.
[14] Bianch, G., et al., Numerical modeling of a two-phase twin-screw expander for Trilateral Flash Cycle applications. International Journal of Refrigeration, Vol.88, pp. 248-259, 2018.
[15] Li Z., et al., Comparison study of Trilateral Rankine Cycle, Organic Flash Cycle and basic Organic Rankine Cycle for low grade heat recovery. Energy Procedia, Vol. 142, pp. 1441-1447, 2017.
[16] Bianchi G., et al., Two-phase chamber modeling of a twin-screw expander for Trilateral Flash Cycle applications. Energy Procedia, Vol. 129, pp. 347-354, 2017.
[17] Smith I.K., Development of the trilateral flash cycle system: Part 1: fundamental considerations. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, Vol. 207, No.3, pp. 179-194, 1993.
[18] Rosset K., et al., Multi-objective optimization of turbo-ORC systems for waste heat recovery on passenger car engines. Energy, Vol. 159, pp. 751-765, 2018.
[19] Bejan A., Tsatsaronis G. and Moran M., Thermal design and optimization. John Wiley & Sons, New York, 1996.
[20] Bahlouli K., Khoshbakhti Saray R. and Sarabchi N., Parametric investigation and thermo-economic multi-objective optimization of an ammonia–water power/cooling cycle coupled with an HCCI (homogeneous charge compression ignition) engine. Energy, Vol.86, pp. 672-684, 2015.
[21] Ahmadi P. and Dincer I., Thermodynamic and exergoenvironmental analyses, and multi-objective optimization of a gas turbine power plant. Applied Thermal Engineering, Vol.31, No.14-15, pp. 2529-2540, 2011.
[22] Petrakopoulou F., et al., Exergoeconomic and exergoenvironmental analyses of a combined cycle power plant with chemical looping technology. International Journal of Greenhouse Gas Control, Vol. 5, No. 3, pp. 475-482, 2011.
[23] Quoilin S., et al., Thermo-economic optimization of waste heat recovery Organic Rankine Cycles. Applied thermal engineering, Vol. 31, No.14-15, pp. 2885-2893, 2011.
[24] Vieira L.S., Donatelli J.L. and Cruz M.E., Exergoeconomic improvement of a complex cogeneration system integrated with a professional process simulator. Energy Conversion and Management, Vol. 50, No. 8, pp. 1955-1967, 2009.
[25] Kolahi M., et al., Thermodynamic and economic performance improvement of ORCs through using zeotropic mixtures: case of waste heat recovery in an offshore platform. Case Studies in Thermal Engineering, Vol. 8, pp. 51-70, 2016.
[26] Turton R., et al., Analysis, synthesis and design of chemical processes. Pearson Education, United Kingdom, 2008.
[27] Yari M., et al., Exergoeconomic comparison of TLC (trilateral Rankine cycle), ORC (organic Rankine cycle) and Kalina cycle using a low grade heat source. Energy, Vol. 83, pp. 712-722, 2015.
[28] Kim K.H., Ko H.J. and Kim K.J.A.E., Assessment of pinch point characteristics in heat exchangers and condensers of ammonia–water based power cycles, Applied Energy, Vol. 113, pp. 970-981, 2014.
[29] Sayyaadi H. and Mehrabipour R.J.E., Efficiency enhancement of a gas turbine cycle using an optimized tubular recuperative heat exchanger. Energy, Vol. 38, No.1, pp. 362-375, 2012.