استفاده از روش غیرمخرب طیف‌سنجی مرئی-فرابنفش (UV.vis) در تعیین غلظت نانوذرات پراکنده شده در مواد تغییرفاز دهنده

نوع مقاله : پژوهشی کامل

نویسندگان

1 دانشجوی دکتری، دانشکده مکانیک و انرژی، دانشگاه شهید بهشتی، تهران، ایران

2 دانشیار، دانشکده مکانیک و انرژی، دانشگاه شهید بهشتی، تهران، ایران

3 استادیار، دانشکده مکانیک و انرژی، دانشگاه شهید بهشتی، تهران، ایران

چکیده

در مقاله حاضر، به منظور بهبود خواص انتقال گرما استئاریک اسید به عنوان یک ماده تغییر فاز دهنده (PCM) در سامانه‌های ذخیره‌سازی انرژی گرمایی، نانوذرات دی اکسید تیتانیوم (TiO2) در آن پراکنده شده است. تمایل ذاتی این ذرات به کلوخه شدن و اختلاف چگالی آن‌ها با سیال پایه همواره منجر به ته‌نشین شدن مقدار قابل توجهی از آن‌ها در طول زمان می‌شود. در این مطالعه نتایج آزمون تعادل رسوب نشان داد که نرخ رسوب‌گذاری با گذشت زمان کاهش یافته و در نهایت به سمت صفر میل می‌کند. در این مرحله تعیین غلظت مخلوط نهایی یکی از چالش‌های پیش رو است که در این‌جا با استفاده از روش غیرمخرب طیف‌سنجی مرئی-فرابنفش تعیین گردیده است. مقایسه نتایج نشان می‌دهد که خطای حاصل از این روش نسبت به روش‌های مخرب کمتر از 10 درصد می‌باشد. اندازه‌گیری‌های رسانایی گرمایی حکایت از این دارد که افزودن مقدار کمی نانوذرات TiO2 در استئاریک اسید در صورت پخش یکنواخت آن قادر است خواص انتقال گرما آن را به طور قابل ملاحظه‌ای افزایش دهد.

کلیدواژه‌ها

موضوعات


[1]     Harikrishnan S., Deenadhayalan M. and Kalaiselvam S., Experimental investigation of solidification and melting characteristics of composite PCMs for building heating application, Energy Conversion and Management, Vol. 86, pp. 864–872, 2014.
[2]      Motahar S., Nikkam N., Alemrajabi A.A., Khodabandeh R., Toprak M. S. and Muhammed M., Experimental investigation on thermal and rheological properties of n-octadecane with dispersed TiO2 nanoparticles, Int. Commun. Heat Mass Transf., Vol. 59, pp. 68–74, 2014.
[3]     Babapoor A. and Karimi G., Thermal properties measurement and heat storage analysis of paraffin-nanoparticles composites phase change material: comparison and optimization, Appl. Therm. Eng., Vol. 7, 2015.
[4]     Khodadadi J. M. and Hosseinizadeh S. F., Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage, Int. Commun. Heat Mass Transf., Vol. 34, pp. 534–543, 2007.
[5]     Sahan N. and Paksoy H. O., Thermal enhancement of paraffin as a phase change material with nanomagnetite, Sol. Energy Mater. Sol. Cells., Vol. 126, pp. 56–61, 2014.
[6]     He Y., Jin Y., Chen H., Ding Y., Cang D. and Lu H., Heat transfer and flow behaviour of aqueous suspensions of TiO2nanoparticles (nanofluids) flowing upward through a vertical pipe, Int. J. Heat Mass Transf., Vol. 50, pp. 2272–2281, 2007.
[7]     Hamilton R. L., Thermal conductivity of heterogeneous two-component systems, Ind. Eng. Chem. Fundam. Vol. 1, pp. 187–191, 1962.
[8]     Harish S., Orejon D., Takata Y. and Kohno M., Thermal conductivity enhancement of lauric acid phase change nanocomposite in solid and liquid state with single-walled carbon nanohorn inclusions, Thermochim. Acta. Vol. 600, pp. 1–6, 2015.
[9]     Luo Z., Zhang Q. and Wu G., Preparation and enhanced heat capacity of nano-titania doped erythritol as phase change material, Int. J. Heat Mass Transf., Vol. 80, pp. 653–659, 2015.
[10] Harikrishnan S. and Kalaiselvam S., Preparation and thermal characteristics of CuO-oleic acid nanofluids as a phase change material, Thermochim. Acta., Vol. 533, pp. 46–55, 2012.
[11] Harikrishnan S., Magesh S. and Kalaiselvam S., Preparation and thermal energy storage behaviour of stearic acid-TiO2nanofluids as a phase change material for solar heating systems, Thermochim. Acta., Vol. 565, pp. 137–145, 2013.
[12] Sharma R. K., Ganesan P., Tyagi V. V., Metselaar H. S. C. and Sandaran S. C., Thermal properties and heat storage analysis of palmitic acid-TiO2composite as nano-enhanced organic phase change material (NEOPCM), Appl. Therm. Eng., Vol. 99, pp. 1254–1260, 2016.
[13] Haghighi E. B., Nikkam N., Saleemi M., Behi M., Mirmohammadi S. A., Poth H., Khodabandeh R., Toprak M. S., Muhammed M. and Palm B., Shelf stability of nanofluids and its effect on thermal conductivity and viscosity, Meas. Sci. Technol., Vol. 24, 2013.
[14] Yoshida H., Masuda H., Fukui K. and Tokunaga Y., Particle size measurement with an improved sedimentation balance method and microscopic method together with computer simulation of necessary sample size, Adv. Powder Technol., Vol. 12, pp. 79–94, 2001.
[15] Dyana Z. N., Khairunisak A. R. and Azlan A. A., Physical Properties of the Amorphous Silica Encapsulated Fluorescence Dye, Adv. Mater. Res., Vol. 686, pp. 285–289, 2013.
[16] López T., Bata-García J. L., Esquivel D., Ortiz-Islas E., Gonzalez R., Ascencio J., Quintana P., Oskam G., Álvarez-Cervera F. J., Heredia-López F. J. and Góngora-Alfaro J. L., Treatment of parkinson’s disease: Nanostructured sol-gel silica-dopamine reservoirs for controlled drug release in the central nervous system, Int. J. Nanomedicine., Vol. 6, pp. 19–31, 2011.
[17] Masoumi H., khoshkhoo  R. H. and Mirfendereski S. M., Modification of physical and thermal characteristics of stearic acid as a phase change materials using TiO2-nanoparticles, Thermochimica Acta journal, Vol. 675, pp. 9–17, 2019,
[18] Haddad Z., Abid C., Oztop H. F. and Mataoui A., A review on how the researchers prepare their nanofluids, International Journal of Thermal Sciences, Vol. 76, pp. 168-189, 2014.
[19] Wu J., Yue G., Xiao Y., Lin J., Huang M., Lan Z., Tang Q., Huang Y., Fan L., Yin S. and Sato T., An ultraviolet responsive hybrid solar cell based on titania/poly(3-hexylthiophene), Sci. Rep., Vol. 3,  2013.