[1] Wang J., Yan Z., Zhou E., Dai Y., Parametric analysis and optimization of a kalian cycle driven by solar energy. Applied Thermal Engineering, Vol. 50, pp. 408-415, 2013.
[2] Cansino J. M., del M., Pablo-Romero R., Roman R., Yniguez R. , Promoting renewable energy sources for heating and cooling in EU-27 countries. Energy Policy, Vol. 39, pp. 3803-3812, 2011.
[3] Zhu J., Hu K., Lu X., Huang X., Liu K., Wu X., A review of geothermal energy resources, development, and applications in China: Current status and prospects. Energy, Vol.93, pp. 466-483, 2015.
[4] Ellabban O., Rub, H., Blaabjerg, F., Renewable energy resources: Current status, future prospects and their enabling technology. Renewable and Sustainable Energy Reviews, Vol. 39, pp. 748-764, 2014.
[5] Kheiri R., Ghaebi H., Ebadollahi M., Thermodynamic modeling and performance analysis of four new integrated organic Rankine cycles (A comparative study). Applied Thermal Engineering, Vol.122, pp.103-117, 2017.
]۶[ رنجبر س.، نعمتی آ. و کلاهی م.، ﺗﺤﻠﯿﻞ ﺗﺮﻣﻮدﯾﻨﺎﻣﯿﮑﯽ و ﺑﻬﺒﻮد ﻋﻤﻠﮑﺮد ﭼﺮﺧﻪی ﺗﻮﻟﯿﺪ ﺗﻮان زﻣﯿﻦﮔﺮﻣﺎﯾﯽ ﺗﺮﮐﯿﺒﯽ راﻧﮑﯿﻦ آﻟﯽ و ﻓﻠﺶ ﺑﺎ اﺳﺘﻔﺎده از ﺳﯿﺎل ﮐﺎری زﺋﻮﺗﺮوﭘﯿﮏ در ﭼﺮﺧﻪی راﻧﮑﯿﻦ آﻟﯽ. مجلۀ مهندسی مکانیک دانشگاه تبریز، ج. 48، ش. 2، ص 131-138، 1397.
[9] Mago P.J., Chamra L.M., Srinivasan K., Somayaj C., An examination of regenerative organic Rankine cycles using dry fluids. Applied thermal engineering, Vol.28 pp. 998-1007, 2008.
[10] Yari M., Performance analysis of the different organic Rankine cycles (ORCs) using dry fluids. International Journal of Exergy, Vol. 6, pp. 323-342, 2009.
[11] Wang J., Yan Z., Wang M., Li M., Dai Y., Multi-objective optimization of an organic Rankine cycle (ORC) for low grade waste heat recovery using evolutionary algorithm. Energy Conversion and Management, Vol. 71, pp.146-158, 2013.
[13] Zare V., A comparative exergoeconomic analysis of ORC configurations for binary geothermal power plants. Energy Conversion and management, Vol. 105, pp. 127-138, 2015.
]14[ وزارت نیرو، راهنمای جامع تولید همزمان برق و حرارت. دفتر بهبود بهرهوری و اقتصاد برق و انرژی، 1388.
]15[ علوی س.، گوشکی ف.، شکیب س.، غفوریان م.، تحلیل ترمودینامیکی و اگزرژتیکی ترکیبهای مختلف چرخه توربین گازی و آب شیرین کن تبخیری چند مرحله ای. مجلۀ مهندسی مکانیک دانشگاه تبریز، ج. 48، ش. 4، ص 29-37، 1397.
[16] Zare V., A comparative thermodynamic analysis of tri-generation systems utilizing low-grade geothermal energy. Energy Conversion and Management, Vol.118, pp.264-274, 2016.
[17] Kalogirou S., Recent patents in absorption cooling systems. Recent Patents on Mechanical Engineering, Vol.1, pp. 58-64, 2008.
]18[ غازانی م.و ثقفیان م.، تحلیل انرژی و اگزرژی سیستمهای تبرید جذبی لیتیم بروماید-آب. مجلۀ مهندسی مکانیک دانشگاه تبریز، ج. 50، ش. 2، ص 1-7، 1399.
[19] Gomri R., Second law comparison of single effect and double effect vapor absorption refrigeration systems. Energy Conversion and management, Vol. 50, pp. 1279-1287, 2009.
[20] Garousi Farshi L., Seyed Mahmoudi S. M., Rosen M. A., Yari M., A comparative study of the performance characteristics of double-effect absorption refrigeration systems. International Journal of Energy Research, Vol. 36, pp. 182–192, 2012.
[21] Abbasi M., Chahartaghi M., Hashemian S., Energy, exergy, and economic evaluations of a CCHP system by using the internal combustion engines and gas turbine as prime mover. Energy Conversion and Management, Vol. 173, pp. 359-374, 2018.
[22] Chen X., Zhou H., Yu Z., Li W., Tang J., Xu C., Ding Y., Wan Z., Thermodynamic and economic assessment of a PEMFC-based micro-CCHP system integrated with geothermal-assisted methanol reforming. International Journal of Hydrogen Energy, Vol. 45, pp. 958-971, 2020.
[23] Munoz Escalona J., Sanchez D., Chacartegui R., Sanchez T., Part-load analysis of gas turbine & ORC combined cycles. Applied Thermal Engineering, Vol. 36, pp.63-72, 2012.
[24] Khaliq A., Kaushik S., Second-law based thermodynamic analysis of Brayton/Rankine combined power cycle with reheat. Applied Energy, Vol. 78, pp. 179-197, 2004.
[25] Ahmadi P., Rosen M. A., Dincer I., Multi objective exergy-based optimization of a polygeneration energy system using an evolutionary algorithm. Energy, Vol. 46 pp.21-31, 2012.
[26] Khaljani M., Khoshbakhti R., Bahlouli K., Comprehensive analysis of energy, exergy and exergo-economic of cogeneration of heat and power in a combined gas turbine and organic Rankine cycle. Energy Conversion and Management, Vol. 97, pp. 154-165, 2015.
[27] Ahmadi M., Mehrpooya M., Pourfayaz F., Thermodynamic and exergy analysis and optimization of a transcritical CO2 power cycle driven by geothermal energy with liquefied natural gas as its heat sink. Applied Thermal Engineering, Vol. 109, pp. 640-652, 2016.
[28] Kang L., Yang J., Deng S., An Q., Zhao J., Wang H., Wang D., Energy, economical, environmental evaluation of a CCHPGSHP system based on carbon tax and electric feed in tariff. Energy Procedia, Vol. 88, pp. 510-517, 2016.
[29] Zhang X., Liu X., Sun X., Jiang C., Li H., Song Q., Zeng J., Zhang G., Thermodynamic and economic assessment of a novel CCHP integrated system taking biomass, natural gas and geothermal energy as co-feeds. Energy Conversion and Management, Vol. 172, pp. 105-118, 2018.
[30] Pashapour M., Jafarmadar S., Khalilarya S., Exergy Analysis of a Novel Combined System Consisting of a Gas Turbine, an Organic Rankine Cycle and an Absorption Chiller to Produce Power, Heat and Cold. International Journal of Engineering, Vol. 32, pp. 1320-1326, 2019
[31] Kanoglu M., Bolatturk A., Performance and parametric investigation of a binary geothermal power plant by exergy. Renewable Energy, Vol. 33, pp. 2366–2374, 2008.
[32] New geothermal site identification and qualification, California Energy Commission, pp.230-240, Arnold Schwarzenegger, Governor, 2004.
[33] Ahmadi P., Dincer I., Rosen M.A., Exergy, exergoeconomic and environmental analysis and evolutionary algorithm based multi- objective optimization of combined cycle power plants. Energy, Vol.36, pp. 5886-5898, 2011.
[34] Bejan A., Moran MJ., Thermal design and optimization, pp.39-113, New York: John Wiley & Sons. 1996.
[35] Anvari S., Khoshbakhti R., Bahlouli K., Conventional and advanced exergetic and exergoeconomic analyses applied to a tri-generation cyle for heat, cold and power production. Energy, Vol. 91, pp.925-939, 2015.
[36] Yari M., Mahmoudi S., A thermodynamic study of waste heat recovery from GT-MHR using organic Rankine cycles. Heat and Mass Transfer, vol. 47, pp. 181-196, 2011.
[37] Mago P.J., Luck R., Energetic and exergetic analysis of waste heat recovery from a microturbine using organic Rankine cycles. International Journal of Energy Research, Vol.37, pp. 888-898, 2013.
[38] Arora A., Kaushik S. C., Theoretical analysis of LiBr/H2O absorption refrigeration systems. International Journal of Energy Research,Vol. 33, pp. 1321-1340, 2009.
[39] Gebreslassie B.H., Medrano M., Boer D., Exergy analysis of multi-effect water/Li-Br absorption system: from half to triple effect. Renewable Energy, Vol. 35, pp.1773-1782, 2010.
[40] Garousi Farshi L., Mahmoudi S.M.S., Rosen M.A., Yari M., Amidpour M., Exergoeconomic analysis of double effect absorption refrigeration systems. Energy Conversion and Management, Vol. 65, pp.13-25, 2013.
[41] Klein S. A., Alvarado F., Engineering equation solver, version 7.441, F-chart software, Middletone, 2005
[42] Wylen V., John G., Fundamentals of Thermodynamics, John Wiley & Sons, New York, 2010.