بررسی آزمایشگاهی عملکرد حرارتی یک لوله گرمایی نوسانی سه بعدی همراه با نانوسیال اکسید آهن در معرض میدان مغناطیسی و تبخیرکن شیاردار شده

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مهندسی مکانیک، دانشگاه آزاد اسلامی، مشهد، ایران

2 دانشیار، گروه مهندسی مکانیک، دانشگاه آزاد اسلامی، مشهد، ایران

3 استادیار، گروه مهندسی مکانیک، دانشگاه آزاد اسلامی، مشهد، ایران

4 دانشجوی دکتری، گروه مهندسی مکانیک، دانشگاه آزاد اسلامی، مشهد، ایران

چکیده

استفاده از لوله‌های گرمایی نوسانی به عنوان یک فناوری نوین در زمینه انتقال گرما در سال‌های اخیر مورد توجه صنایع مختلف قرار گرفته است. در این تحقیق آزمایشگاهی عملکرد حرارتی لوله گرمایی نوسانی سه بعدی با ساختاری جدید، با نانوسیال Fe3O4 و تحت تاثیر میدان مغناطیسی در توان‌های ورودی متفاوت (450-0 وات) مورد بررسی قرار گرفته است. نتایج آزمایشات نشان داد که دستگاه در نسبت پرشدگی 50% عملکرد حرارتی بهتری دارد. اگرچه لوله گرمایی نوسانی در زمینه‌های بسیاری به کار رفته است اما لوله گرمایی نوسانی سه بعدی تاکنون به صورت گسترده مورد بررسی قرار نگرفته است.
استفاده از نانوسیال اکسید آهن به صورت چشمگیری عملکرد حرارتی لوله گرمایی نوسانی را به ویژه در نسبت پرشدگی 50% در مقایسه با آب خالص بهبود می‌بخشد. همچنین نتایج نشان می دهد که استفاده از تبخیرکن شیاردار شده باعث افزایش ضریب انتقال گرما خواهد شد. لوله‌های تبخیرکن شیاردار، عملکرد حرارتی بهتری نسبت به لوله ساده دارد. همچنین وقتی تبخیرکن در معرض میدان مغناطیسی ثابت قرار می‌گیرد، عملکرد حرارتی دستگاه به طرز چشمگیری بهبود می‌یابد.

کلیدواژه‌ها

موضوعات


1] Nazari M. A., Ahmadi M. H., Ghasempour R., Shafii M. B., Mahian O., Kalogirou S. et al., A review on pulsating heat pipes: from solar to cryogenic applications, Applied Energy, Vol. 222, pp. 475-484, 2018.
[2] Ma H., Oscillating heat pipes. Springer, 2015.
[3] Nazari M. A., Ahmadi M. H., Ghasempour R., and Shafii M. B., How to improve the thermal performance of pulsating heat pipes: A review on working fluid, Renewable and Sustainable Energy Reviews, Vol. 91, pp. 630-638, 2018.
[4] Nazari M. A., Ahmadi M. H., Sadeghzadeh M., Shafii M. B., and Goodarzi M., A review on application of nanofluid in various types of heat pipes, Journal of Central South University, Vol. 26, No. 5, pp. 1021-1041, 2019.
[5] Goharkhah M., Ashjaee M., and Shahabadi M., Experimental investigation on convective heat transfer and hydrodynamic characteristics of magnetite nanofluid under the influence of an alternating magnetic field, International Journal of Thermal Sciences, Vol. 99, pp. 113-124, 2016.
[6] Abareshi M., Goharshadi E. K., Zebarjad S. M., Fadafan H. K., and Youssefi A., Fabrication, characterization and measurement of thermal conductivity of Fe3O4 nanofluids, Journal of Magnetism and Magnetic Materials, Vol. 322, No. 24, pp. 3895-3901, 2010.
[7] Fadaei F., Shahrokhi M., Dehkordi A. M., and Abbasi Z., Heat transfer enhancement of Fe3O4 ferrofluids in the presence of magnetic field, Journal of Magnetism and Magnetic Materials, Vol. 429, pp. 314-323, 2017.
[8] Odenbach S., Colloidal magnetic fluids: basics, development and application of ferrofluids. Springer, 2009.
[9] Odenbach S. and Thurm S., "Magnetoviscous effects in ferrofluids," in Ferrofluids: Springer, 2002, pp. 185-201.
[10] Rosensweig R. E., Ferrohydrodynamics. Courier Corporation, 2013.
[11] Yamaguchi H., Niu X.-D., Zhang X.-R., and Yoshikawa K., Experimental and numerical investigation of natural convection of magnetic fluids in a cubic cavity, Journal of Magnetism and Magnetic Materials, Vol. 321, No. 22, pp. 3665-3670, 2009.
[12] Yamaguchi H., Zhang X.-R., Niu X.-D., and Yoshikawa K., Thermomagnetic natural convection of thermo-sensitive magnetic fluids in cubic cavity with heat generating object inside, Journal of Magnetism and Magnetic Materials, Vol. 322, No. 6, pp. 698-704, 2010.
[13] Sheikholeslami M. and Gorji-Bandpy M., Free convection of ferrofluid in a cavity heated from below in the presence of an external magnetic field, Powder Technology, Vol. 256, pp. 490-498, 2014.
[14] Sheikholeslami M., Gorji-Bandpy M., and Ganji D., Lattice Boltzmann method for MHD natural convection heat transfer using nanofluid, Powder Technology, Vol. 254, pp. 82-93, 2014.
[15] Sheikholeslami M., Gorji-Bandpy M., Seyyedi S., Ganji D., Rokni H. B., and Soleimani S., Application of LBM in simulation of natural convection in a nanofluid filled square cavity with curve boundaries, Powder Technology, Vol. 247, pp. 87-94, 2013.
[16] Sheikholeslami M., Rashidi M., and Ganji D., Numerical investigation of magnetic nanofluid forced convective heat transfer in existence of variable magnetic field using two phase model, Journal of Molecular Liquids, Vol. 212, pp. 117-126, 2015.
[17] Ghasemian M., Ashrafi Z. N., Goharkhah M., and Ashjaee M., Heat transfer characteristics of Fe3O4 ferrofluid flowing in a mini channel under constant and alternating magnetic fields, Journal of Magnetism and Magnetic Materials, Vol. 381, pp. 158-167, 2015.
[18] Afrand M., Toghraie D., and Sina N., Experimental study on thermal conductivity of water-based Fe3O4 nanofluid: development of a new correlation and modeled by artificial neural network, International Communications in Heat and Mass Transfer, Vol. 75, pp. 262-269, 2016.
[19] Smoot C. and Ma H., Experimental investigation of a three-layer oscillating heat pipe, Journal of Heat Transfer, Vol. 136, No. 5, p. 051501, 2014.
[20] Qu J., Zhao J., and Rao Z., Experimental investigation on the thermal performance of three-dimensional oscillating heat pipe, International Journal of Heat and Mass Transfer, Vol. 109, pp. 589-600, 2017.
[21] Qu J., Zhao J., and Rao Z., Experimental investigation on thermal performance of multi-layers three-dimensional oscillating heat pipes, International Journal of Heat and Mass Transfer, Vol. 115, pp. 810-819, 2017.
[22] Qu J., Ke Z., Zuo A., and Rao Z., Experimental investigation on thermal performance of phase change material coupled with three-dimensional oscillating heat pipe (PCM/3D-OHP) for thermal management application, International Journal of Heat and Mass Transfer, Vol. 129, pp. 773-782, 2019.
[23] Qu J., Li X., Cui Y., and Wang Q., Design and experimental study on a hybrid flexible oscillating heat pipe, International Journal of Heat and Mass Transfer, Vol. 107, pp. 640-645, 2017.
[24] Wang J., Ma H., Zhu Q., Dong Y., and Yue K., Numerical and experimental investigation of pulsating heat pipes with corrugated configuration, Applied Thermal Engineering, Vol. 102, pp. 158-166, 2016.
[25] Kang S.-W., Wang Y.-C., Liu Y.-C., and Lo H.-M., Visualization and thermal resistance measurements for a magnetic nanofluid pulsating heat pipe, Applied Thermal Engineering, Vol. 126, pp. 1044-1050, 2017.
[26] Goshayeshi H. R., Goodarzi M., Safaei M. R., and Dahari M., Experimental study on the effect of inclination angle on heat transfer enhancement of a ferrofluid in a closed loop oscillating heat pipe under magnetic field, Experimental Thermal and Fluid Science, Vol. 74, pp. 265-270, 2016.
[27] Goshayeshi H. R. and Chaer I., Experimental study and flow visualization of Fe2O3/kerosene in glass oscillating heat pipes, Applied Thermal Engineering, Vol. 103, pp. 1213-1218, 2016.
[28] Xing M., Yu J., and Wang R., Performance of a vertical closed pulsating heat pipe with hydroxylated MWNTs nanofluid, International Journal of Heat and Mass Transfer, Vol. 112, pp. 81-88, 2017.
[29] Azizian R., Doroodchi E., McKrell T., Buongiorno J., Hu L., and Moghtaderi B., Effect of magnetic field on laminar convective heat transfer of magnetite nanofluids, International Journal of Heat and Mass Transfer, Vol. 68, pp. 94-109, 2014.
[30] Goshayeshi H. R., Izadi F., and Bashirnezhad K., Comparison of heat transfer performance on closed pulsating heat pipe for Fe3O4 and ɤFe2O3 for achieving an empirical correlation, Physica E: Low-Dimensional Systems and Nanostructures, Vol. 89, pp. 43-49, 2017.