تاثیر ابعاد هندسی قطعه‌کار و ابزار بر پایداری لرزشی فرآیند فرزکاری دیواره‌های جدار نازک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، دانشکده مهندسی مکانیک، دانشگاه تبریز، تبریز، ایران

2 استاد، دانشکده مهندسی مکانیک، دانشگاه صنعتی شریف، تهران، ایران

3 دانشجو‌ی دکترا، دانشکده مهندسی مکانیک، دانشگاه تبریز، تبریز، ایران

چکیده

فرآیند فرزکاری دیواره‌های جدار نازک به صورت گسترده در صنایع مختلف از جمله خودرو، هوافضا مورد استفاده قرار می‌گیرد. یکی از مشکلات رایج در این فرآیند، بروز ارتعاشات خودتحریکِ لرزشی یا همان ناپایداری چَتِر می‌باشد که سبب کیفیت سطح نامطلوب، کاهش راندمان ماشین‌کاری، شکست ابزار و قطعه‌کار و غیره می‌شود. مطالعات فراوانی توسط محققان مختلف برای شناخت پدیده چَتِر و کنترل اثرات مخرب آن، انجام شده است. هدف اصلی این مقاله بررسی تاثیر پارامترهای هندسی سیستم فرزکاری بر پایداری لرزشی دیواره‌های جدار نازک می‌باشد. به این منظور ابتدا با به کارگیری تابع تبدیل نسبی، مدل دینامیکی قطعه‌کار و ابزار ارائه گردیده است؛ سپس با انجام تست‌های تجربی، ضرایب نیروی برشی استخراج و ناحیه پایداریِ سیستم، استخراج می‌شود. در نهایت تاثیر ابعاد قطعه‌کار و ابزار بر ناحیه پایدارِ سیستم، بررسی می‌شود. نتایج بررسی نشان داد با افزایش طول آزاد ابزار، ناحیه پایداری سیستم کاهش پیدا می‌کند.

کلیدواژه‌ها

موضوعات


[1]  Sunilsing R., Deshmukh D., Experimental analysis of regenerative chatter in BFW vertical milling machine, International Journal of Innovative Research in Science, Engineering and Technology, Vol. 3, pp. 13731-13739, 2014.
[2]  Insperger T., Mann B.P., Stépán G., Bayly P.V., Stability of up-milling and down-milling, part 1: alternative analytical methods, International journal of Machine tools and manufacture, Vol. 43, pp. 25-34, 2003.
[3]  Otto A., Rauh S., Kolouch M., Radons G., Extension of Tlusty׳ s law for the identification of chatter stability lobes in multi-dimensional cutting processes, International Journal of Machine Tools and Manufacture, Vol. 82, pp. 50-58 ,2014.
[4]  Tobias S.A., Fishwick W., A theory of Regenerative chatter, The Engineer London, 205, 1958.
[5]  Gonzalo O., Peigne G., Gonza´ lez D., High speed machining simulation of thin-walled components, in:  Proceedings of 5th International Conference on High Speed Machining, University of Metz Metz, France, 2006.
[6]  Song Q.H., Wan Y., Yu S.Q., Ai X., Pang J.Y., Stability Prediction during Thin-Walled Workpiece High-Speed Milling, Advanced Materials Research (Ultra-Precision Machining Technologies, CJICUPM2008), Vol. 69-70, pp. 428-432, 2009.
[7]  Bravo U., Altuzarra O., López de Lacalle L.N., Sánchez J.A., Campa F.J., Stability limits of milling considering the flexibility of the workpiece and the machine, International Journal of Machine Tools and Manufacture, Vol. 45, pp. 1669-1680, 2005.
[8]  Zhang X., Xiong C., Ding Y., A New Solution for Stability Prediction in Flexible Part Milling, in: S. Jeschke, H. Liu, D. Schilberg (Eds.) Intelligent Robotics and Applications, Springer Berlin Heidelberg, pp. 452-464, 2011.
[9]  Powałka B., Jemielniak K., Stability analysis in milling of flexible parts based on operational modal analysis, CIRP Journal of Manufacturing Science and Technology, Vol. 9, pp. 125-135, 2015.
[10]  Wan M., Dang X.-B., Zhang W.-H., Yang Y., Optimization and improvement of stable processing condition by attaching additional masses for milling of thin-walled workpiece, Mechanical Systems and Signal Processing, Vol. 103, pp. 196-215, 2018.
[11]  Wan M., Gao T.-Q., Feng J., Zhang W.-H., On improving chatter stability of thin-wall milling by prestressing, Journal of Materials Processing Technology, Vol. 264, pp. 32-44, 2019.
[12]  Alan, S., Budak, E. and Özgüven, H.N., Analytical prediction of part dynamics for machining stability analysis. International Journal of Automation Technology, Vol. 4(3), pp. 259-267, 2010.
[13]  Leissa A.W., Vibration of plates, in, OHIO STATE UNIV COLUMBUS, 1969.
[14]  Adetoro O., Wen P., Sim W., Vepa R., Numerical and experimental investigation for stability lobes prediction in thin wall machining, Engineering Letters, 2009.
[15]  Clough R.W., Penzien J., Dynamics of structures, Copyright of Applied Mechanics & Materials, 1993.
[16]  Budak E., Altintas Y., Analytical prediction of chatter stability in milling—part I: general formulation, Journal of dynamic systems, measurement, and control, Vol. 120, pp. 22-30, 1998.
[17]  Altintas Y., Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design, Cambridge university press, 2012.
[18]  Schmitz T.L., Smith K.S., Machining dynamics, Springer, 2008.