بررسی آزمایشگاهی اثر شیب پوشش شیشه ای با سطوح تخت و محدب صفحه جاذب در بازدهی آب شیرین کن خورشیدی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، گروه مهندسی مکانیک، دانشگاه آزاد اسلامی، مشهد، ایران

2 دانشجوی دکتری، گروه مهندسی مکانیک، دانشگاه آزاد اسلامی، مشهد، ایران

3 کارشناس ارشد، گروه مهندسی مکانیک، دانشگاه آزاد اسلامی، مشهد، ایران

4 دانشجوی کارشناسی ارشد، گروه مهندسی مکانیک، دانشگاه آزاد اسلامی، مشهد، ایران

چکیده

در این مقاله نتایج آزمایشگاهی حاصل از بررسی اثر زاویه شیب پوشش شیشه‌ای بر عملکرد دو حالت هندسه آب شیرین کن خورشیدی در حالت تخت و محدب و میزان تولید آب مقطر ارائه شده‌است. شیب زوایای مورد مطالعه 25 درجه، 27.5 درجه، 30 درجه، 32.5 درجه و 35 درجه انتخاب شده‌است، درحالی که سایر پارامترهای طراحی ثابت مانده‌است. تحقیقات نشان داده که جمع‌کننده خورشیدی با صفحه جاذب محدب میزان تولید آب روزانه متوسط بالاتری در مقایسه با خروجی از جمع‌کننده خورشیدی با صفحه جاذب تخت را دارا می‌باشد. آزمایشات همچنین نشان داد که زاویه شیب اثر قابل توجهی بر عملکرد دستگاه آب شیرین کن خورشیدی دارد. مقدار زاویه شیب 32.5 درجه است و زاویه شیب بیشتر باعث کاهش ضریب انتقال گرما می‌گردد. این نتایج را می‌توان برای اهداف طراحی مورد استفاده قرار داد و فرض رایج برای استفاده از زاویه‌ های پایین تر برای بهینه سازی بهره‌وری را از بین می‌برد. در نهایت، از اطلاعات به دست آمده روابط تجربی جدیدی برای عدد ناسلت با توجه به سطوح صاف و محدب با زاویه شیب مختلف پوشش شیشه‌ای به دست آمد

کلیدواژه‌ها

موضوعات


[1]    گچکاران آ. و جدا ف.، طراحی و بهینه­سازی آب­شیرین کن خورشیدی با ذخیره­سازی انرژی گرمایی به کمک مواد تغییر فاز دهنده. مجله مهندسی مکانیک دانشگاه تبریز، د. 49، ش. 1، ص. 235-244، 1398.
[2]    خسروجردی س.، میر عبدالله لواسانی آ. و دلفانی ش.، تحلیل تجربی تاثیر صفحات گرافن اکساید/آب دیونیزه بر عملکرد یک گردآورنده جذب مستقیم خورشیدی. مجله مهندسی مکانیک دانشگاه تبریز، د. 48، ش. 1، ص. 169-177، 1397.
[3]     خوش آهنگ ع.، رهبر ن.، تاثیر لایه متخلخل بر راندمان آب شیرین کن خورشیدی شیب دار یک طرفه، بررسی تجربی. مجله مهندسی مکانیک و ارتعاشات، د. 9، ش. 1، ص. 44-36، 1397.
[4]     علی پناه ف.، رهبر ن.، بررسی عددی تاثیر ابعاد پله بر عملکرد یک آب شیرین کن خورشیدی پلکانی. مجله مهندسی مکانیک و ارتعاشات،  د. 6، ش. 1، ص. 218-214، 1397.
[5]     Sadripour S., 3D numerical analysis of atmospheric-aerosol/carbon-black nanofluid flow within a solar air heater located in Shiraz, Iran. International Journal of Numerical Methods for Heat & Fluid Flow,  2018.
[6]     Dsilva Winfred Rufuss D., Iniyan S., Suganthi L. and Davies P.A., Solar stills: A comprehensive review of designs, performance and material advances. Renewable and Sustainable Energy Reviews, Vol. 63, pp. 464-496, 2016.
[7]     Mahian O., Kianifar A., Heris S.Z., Wen D., Sahin A.Z. and Wongwises S., Nanofluids effects on the evaporation rate in a solar still equipped with a heat exchanger. Nano Energy, Vol. 36, pp. 134-155, 2017.
[8]     Zanganeh P., Goharrizi A.S., Ayatollahi S. and Feilizadeh M., Productivity enhancement of solar stills by nano-coating of condensing surface. Desalination, Vol. 454, pp.1-9, 2019.
[9]     Menni Y., Azzi A. and Chamkha A., Modeling and analysis of solar air channels with attachments of different shapes. International Journal of Numerical Methods for Heat & Fluid Flow,  2018.
[10]  Kabeel A.E., Omara Z.M., Essa F.A. and Abdullah A., Solar still with condenser-A detalied review. Renewable and Sustianable Energy Reviews, Vol. 59(C), pp.839-857, 2013.
[11]  Arunkumar T., Raj K., Dsilva Winfred Rufuss D., Denkenberger D., Tingting G., Xuan L. and Velraj R., A review of efficient high productivity solar stills. Renewable and Sustainable Energy Reviews, Vol. 101, pp. 197-220, 2019.
[12]  Ahsan, Imteaz M., Thomas U.A., Azmi M., Rahman A. and Nik Daud N.N., Parameters affecting the performance of a low cost solar still. Applied Energy, Vol. 114, pp. 924-930, 2014.
[13]  El-Sebaii and El-Bialy E., Advanced designs of solar desalination systems: A review. Renewable and Sustainable Energy Reviews, Vol. 49, pp.1198-1212, 2015.
[14]  Yang Y., Zhao R., Zhang T., Zhao K., Xiao P., Ma Y., Ajayan P.M., Shi G. and Chen Y., Graphene-Based Standalone Solar Energy Converter for Water Desalination and Purification. ACS nano, 2018.
[15]  Omara Z.M., Kabeel A.E. and Essa F.A., Effect of using nanofluids and providing vacuum on the yield of corrugated wick solar still. Energy Conversion and Management, Vol. 103, pp. 965-972, 2015.
[16]  Abujazar M.S.S., Fatihah S., Rakmi A. and Shahrom M., The effects of design parameters on productivity performance of a solar still for seawater desalination: A review. Desalination, Vol. 385, pp.178-193, 2016.
[17]  Singh D.B., Yadav J.K., Dwivedi V.K., Kumar S., Tiwari G.N. and Al-Helal I.M., Experimental studies of active solar still integrated with two hybrid PVT collectors. Solar Energy, Vol. 130, pp. 207-223, 2016.
[18]  Chen Z., Peng J., Chen G., Hou L., Yu T., Yao Y. and Zheng H., Analysis of heat and mass transferring mechanism of multi-stage stacked-tray solar seawater desalination still and experimental research on its performance. Solar Energy, Vol. 142, pp. 278-287, 2017.
[19]  Kabeel A.E. and Abdelgaied M., Observational study of modified solar still coupled with oil serpentine loop from cylindrical parabolic concentrator and phase changing material under basin. Solar Energy, Vol. 144, pp. 71-78, 2017.
[20]  Ibrahim A.G.M. and Elshamarka S.E., Performance study of a modified basin type solar still. Solar Energy, Vol. 118, pp. 397-409, 2015.
[21]  Rahbar N., Esfahani J.A. and Fotouhi-Bafghi E., Estimation of convective heat transfer coefficient and water-productivity in a tubular solar still – CFD simulation and theoretical analysis. Solar Energy, Vol. 113, pp. 313-323, 2015.
[22]  Dehghan A.A., Afshari A., Rahbar N., Thermal modeling and exergetic analysis of a thermoelectric assisted solar still. Solar Energy, Vol. 115, pp. 277-288, 2015.
[23]  Sathyamurthy R., El-Agouz S.A. and Dharmaraj V., Experimental analysis of a portable solar still with evaporation and condensation chambers. Desalination, Vol. 367, pp. 180-185, 2015.
[24]  Harris Samuel D.G., Nagarajan P.K., Sathyamurthy R., El-Agouz S.A. and Kannan E., Improving the yield of fresh water in conventional solar still using low cost energy storage material. Energy Conversion and Management, Vol. 112, pp. 125-134, 2016.
[25]  Kabeel A.E. and Abdelgaied M., Improving the performance of solar still by using PCM as a thermal storage medium under Egyptian conditions. Desalination, Vol. 383, pp. 22-28, 2016.
[26]  Alaian W.M., Elnegiry E.A. and Hamed A.M., Experimental investigation on the performance of solar still augmented with pin-finned wick. Desalination, Vol. 379, pp. 10-15, 2016.
[27]  Morad M.M., El-Maghawry H.A.M. and Wasfy K.I., Improving the double slope solar still performance by using flat-plate solar collector and cooling glass cover. Desalination, Vol. 373, pp. 1-9, 2015.
[28]  Panchal H., Performance investigation on variations of glass cover thickness on solar still: experimental and theoretical analysis. Technology and Economics of Smart Grids and Sustainable Energy, Vol. 1(1), pp. 1-7, 2016.
[29]  Sathyamurthy R., Kennady H.J., Nagarajan P.K. and Ahsan A., Factors affecting the performance of triangular pyramid solar still. Desalination, Vol. 344, pp. 383-390, 2014.
[30]  El-Agouz S.A., El-Samadony Y.A.F. and Kabeel A.E., Performance evaluation of a continuous flow inclined solar still desalination system. Energy Conversion and Management, Vol. 101, pp. 606-615, 2015.
[31]  Walid H., Soifiane K., Yacine H. and Arif M., Nanopyranid-based absorber to boost the efficiency of InGaN solar cells. Solar Energy, Vol. 190, pp. 93-103, 2019.
[32]  Mohamed A.F., Hegazi A.A., Sultan G.I. and Emad M.S., Enhancement of a solar still performance by inclusion the basalt stones as a porus sensible absorber: Experimental study and thermo-economic analysis. Solar Energy Materials and Solar Cells. Vol. 200, pp. 109-119, 2019.
[33]  Elango T. and Murugavel K.K., The effect of the water depth on the productivity for single and double basin double slope glass solar stills. Desalination, Vol. 359, pp. 82-91, 2015.
[34]  Harris Samuel D., Nagarajan P., Arunkumar T., Kannan E. and Sathyamurthy R., Enhancing the solar still yield by increasing the surface area of water—A review. Environmental Progress & Sustainable Energy, Vol. 35(3), pp. 815-822, 2016.
[35]  Bhardwaj R., ten Kortenaar M.V. and Mudde R.F., Maximized production of water by increasing area of condensation surface for solar distillation. Applied Energy, Vol. 154, pp. 480-490, 2015.
[36]  Hansen R.S., Narayanan C.S. and Murugavel K.K., Performance analysis on inclined solar still with different new wick materials and wire mesh. Desalination, Vol. 358, pp. 1-8, 2015.
[37]  Panchal H.N. and Patel S., An extensive review on different design and climatic parameters to increase distillate output of solar still. Renewable and Sustainable Energy Reviews, Vol. 69, pp. 750-758, 2017.
[38]  Dimri V., Sarkar B., Singh U. and Tiwari G., Effect of condensing cover material on yield of an active solar still: an experimental validation. Desalination, Vol. 227(1-3), pp. 178-189, 2008.
[39]  Sharshir S.W., Yang N., Peng G. and Kabeel A.E., Factors affecting solar stills productivity and improvement techniques: A detailed review. Applied Thermal Engineering, Vol. 100, pp. 267-284, 2016.
[40]  Bait O. and Si–Ameur M., Enhanced heat and mass transfer in solar stills using nanofluids: A review. Solar Energy, Vol. 170, pp. 694-722, 2018.
[41]  Verma S.K., Tiwari A.K., Tiwari S. and Chauhan D.S., Performance analysis of hybrid nanofluids in flat plate solar collector as an advanced working fluid. Solar Energy, Vol. 167, pp. 231-241, 2018.
[42]  Kabeel A.E. and Abdelgaied M., Enhancement of pyramid-shaped solar stills performance using a high thermal conductivity absorber plate and cooling the glass cover. Renewable Energy, Vol. 146, pp. 769-775, 2019.
[43]  Khalifa A.J.N., On the effect of cover tilt angle of the simple solar still on its productivity in different seasons and latitudes. Energy conversion and management, Vol. 52(1), pp. 431-436, 2011.
[44]  Sivakumar V. and Ganapathy Sundaram E., Improvement techniques of solar still efficiency: A review. Renewable and Sustainable Energy Reviews, Vol. 28, pp. 246-264, 2013.
[45]  Ulgen K., Optimum tilt angle for solar collectors. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, Vol. 28(13), pp. 1171-1180, 2006.
[46]  Olcan, Multi-objective analytical model for optimal sizing of stand-alone photovoltaic water pumping systems. Energy conversion and management, Vol. 100, pp. 358-369, 2015.
[47]  Mohammadi K. and Khorasanizadeh H., A review of solar radiation on vertically mounted solar surfaces and proper azimuth angles in six Iranian major cities. Renewable and Sustainable Energy Reviews, Vol. 47, pp. 504-518, 2015.
[48]  Llorens, Which direction should solar panels face?, in: https://solarpowerrocks.com/solar-basics/which-direction-should-solar-panels-face/ (Ed.), 2018.
[49]  Kaushal and Varun., Solar stills: A review. Renewable and Sustainable Energy Reviews, Vol. 14(1), pp. 446-453, 2010.
[50]  Tiwari A.K. and Tiwari G., Effect of water depths on heat and mass transfer in a passive solar still: in summer climatic condition. Desalination, Vol. 195(1-3), pp. 78-94, 2006.
[51]  Gawande J.S. and Bhuyar L.B., Effect of shape of the absorber surface on the performance of stepped type solar still. Energy and Power Engineering, Vol. 5(08), pp. 489-497, 2013.
[52]  Mousa H. and Gujarathi A.M., Modeling and analysis the productivity of solar desalination units with phase change materials. Renewable Energy, Vol. 95, pp. 225-232, 2016.