[1] Koch F, Gresch M, Shewarega F, Erlich I, Bachmann U., Consideration of wind farm wake effect in power system dynamic simulation. IEEE Russia Power Tech Conference, St. Petersburg, Russia, 2005.
[2] Wu, Y.T., Porté-Agel, F., Modeling turbine wakes and power losses within a wind farm using LES: An application to the Horns Rev offshore wind farm. Renewable Energy, Vol. 75, pp.945-955, 2015.
[3] Xie, S., Archer, C.L. A Numerical Study of Wind-Turbine Wakes for Three Atmospheric Stability Conditions. Boundary-Layer Meteorol, Vol. 165, pp. 87–112, 2017.
[4] Dörenkämper, M., Witha, B., Steinfeld, G., Heinemann, D., Kühn, M., The impact of stable atmospheric boundary layers on wind-turbine wakes within offshore wind farms. Journal of Wind Engineering and Industrial Aerodynamics, Vol. 144, pp. 146-153, (2015).
[5] Qian, G. W., Ishihara, T., Numerical study of wind turbine wakes over escarpments by a modified delayed detached eddy simulation. Journal of Wind Engineering and Industrial Aerodynamics, Vol.191, pp. 41-53, 2019.
[6] Sedaghatizadeh, N., Arjomandi, M., Kelso, R., Cazzolato, B., Ghayesh, M. H., Modelling of wind turbine wake using large eddy simulation. Renewable Energy, Vol. 115, pp. 1166-1176, 2018.
[7] Lanchester F. W., A contribution to the theory of propulsion and the screw propeller. Journal of the American Society for Naval Engineers, Vol. 27, No. 2, pp. 509-510, 1915.
[8] Betz A., Der Maximum der theoretisch mölichen Ausnützung des Windes durch Windmotoren. Zeitschrift für das Gesamte Turbinenwesen, No. 20, 1990.
[9] Frandsen S., Barthelmie R., Pryor S., Rathmann O., Larsen S., Højstrup J., and Thøgersen M., Analytical modelling of wind speed deficit in large offshore wind farms. Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, Vol. 9, Issue 1‐2, pp. 39-53, 2006.
[10] Crasto G., Gravdahl A. R., CFD wake modeling using a porous disc. European Wind Energy Conference and Exhibition, Brusssels, Belgium, 2008.
[11] Whale J., Anderson C. G., Bareiss R., and Wagner S., An experimental and numerical study of the vortex structure in the wake of a wind turbine. Journal of Wind Engineering and Industrial Aerodynamics, Vol. 84, No. 1, pp. 1-21, 2000.
[12] Bastankhah M. and Porté-Agel F., A new analytical model for wind-turbine wakes. Renewable Energy, Vol. 70, pp. 116-123, 2014.
[13] مشهدی م. و قاسمیاصل ر.، شبیهسازی و تحلیل دنباله توربین بادی Vestas-V47 با کمک دینامیک سیالات محاسباتی، دومین کنفرانس انرژی بادی، تهران، ایران،1393.
[14] Emami A. and Noghreh P., New Approach on Optimization in Placement of Wind Turbines with in Wind Farm by Genetic Algorithm. Renewable Energy, Vol. 35, No. 7, pp. 59-64, 2010.
[15] Kim H., Singh C. and Sprintson A., A Simulation and Estimation of Reliability in a Wind Farm Considering the Wake Effect. IEEE Transactions on Sustainable Energy, Vol. 3, No. 2, pp. 274-282, 2012.
[16] شیخ حسینی ش. و فدائی نژاد م.، تعیین آرایش بهینه توربینها برای مزرعه بادی در منطقهی میلنادر، نشریهی علمی پژوهشی مهندسی و مدیریت انرژی، سال سوم، شماره چهارم، ص 14-23، 1392.
[18] González J. S., Payán M. B. and Santos J. R., A new and efficient method for optimal design of large offshore wind power plants. IEEE Transactions on Power Systems, Vol. 28, No. 3, pp. 3075-3084, 2013.
[19] عاطفی ز.، بهینهسازی محل استقرار توربینهای بادی در یک مزرعه. پایاننامه کارشناسی ارشد، دانشگاه علم و صنعت ایران، 1387.
[20] Akwa J. V., Vielmo H. A. and Petry A. P., A review on the performance of Savonius wind turbines. Renewable and sustainable energy reviews, Vol. 16, No. 5, pp. 3054-3064, 2012.
[21] Alfredsson P. H. and Dahlberg J.A., A preliminary wind tunnel study of windmill wake dispersion in
various flow conditions, Technical Note of the Aeronautical Research Institute of Sweden (FFA) UA-1499, Part 7, 1979.