بررسی عددی افزایش انتقال گرما نانوسیال در گردآورنده خورشیدی صفحه تخت با قراردادن نوار پیچشی چندکاناله در داخل لوله

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجو کارشناسی ارشد، گروه مهندسی مکانیک، دانشگاه صنعتی نوشیروانی بابل، بابل، ایران

2 استادیار، گروه مهندسی مکانیک، دانشگاه صنعتی نوشیروانی بابل، بابل، ایران

چکیده

انتقال گرما و ساختار جریان نانوسیال در داخل لوله به همراه نوار پیچشی چند کاناله بر روی یک گردآورنده خورشیدی صفحه تخت در این مطالعه عددی مورد تحلیل قرار گرفت. نانوسیال آب-آلومینیوم اکسید با کسر حجمی 3% به عنوان سیال کاری استفاده شد. نانوسیال در بازه عدد رینولدز 4000 الی 20000 بررسی گردید. تاثیرات تعداد کانال (2، 3، 4، 5 و6n=) و ابعاد کانال نظیر نسبت قطر (1/0، 12/0 و 14/0=D*) و پیچش (4، 5، 6 و 7 N=) مختلف بر روی انتقال گرما و افت فشار به طور جداگانه ارائه گردید. نتایج نشان می‌دهد که قرار گرفتن نوار پیچشی چند کاناله باعث ایجاد جریان ثانویه در نانوسیال می‌شود. به دنبال آن اختلاط سیال بهبود و درنتیجه انتقال گرما افزایش ‌می‌یابد.. افزایش تعداد کانال، نسبت قطر و پیچش باعث افزایش ضریب انتقال گرما و افت فشار می‌شود. بیشترین ضریب عملکرد حرارتی زمانی که عدد رینولدرز کمترین مقدار را داراست، برای حالتی است که نوار پیچشی دارای 2 کانال عبور سیال (2n=)، نسبت قطر 14/0 و نسبت پیچش 7 باشد.

کلیدواژه‌ها

موضوعات


[1]  Javaniyan Jouybari H., Saedodin S., Zamzamian A., Nimvari M. E., Experimental investigation of thermal performance and entropy generation of a flat-plate solar collector filled with porous media, Applied Thermal Engineering, Vol. 127, pp. 1506-1517, 2017.
[2]  Choi S. U. S., Eastman J. A., Enhancing thermal conductivity of fluids with nanoparticles: Argonne National Lab., IL (United States), 1995.
[3]  Masuda H., Ebata A., Teramae K., Hishinuma N., Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles Dispersion of Al2O3, SiO2 and TiO2 Ultra-Fine Particles, Netsu Bussei, Vol. 7, No. 4, pp. 227-233, 1993.
[4]   زمزمیان ا. تاجیک م. ایمانی ا.، بررسی تجربی کاربرد نانوسیالات در گردآورنده‌های خورشیدی صفحه تخت. مجلۀ مهندسی مکانیک دانشگاه تبریز، د. 46، ش. 2، ص 41-49، 1395.
[5]  صدقی‌نسب ا. اشجاری‌اقدم م‌ع. محمدپورفرد م.، مطالعه عددی تأثیر نانو سیال بر انتقال حرارت جابجایی جریان آرام و آشفته در لوله‌های مستقیم و U شکل. مجلۀ مهندسی مکانیک دانشگاه تبریز، د. 46، ش. 4، ص 305-309، 1395.
[6]   ابراهیم‌نیا بجستان ا. نیازمند ح.، بررسی اثر نانوسیالات در لوله‌های خمیده جهت بهبود انتقال حرارت مبدل‌های حرارتی. مجلۀ مهندسی مکانیک دانشگاه تبریز، د. 40، ش. 1، ص 1-18، 1389.
[7]  جهانبخشی ا. احمدی ندوشن ا.، بررسی انتقال حرارت جابجایی نانوسیال در کانال مربعی با لوله صلب میانی و صفحه نگهدارنده. مجلۀ مهندسی مکانیک دانشگاه تبریز، د. 46، ش. 4، ص 59-68، 1395.
[8]   حسینی م. قاسمی ب. رئیسی ا.، جابجایی طبیعی نانوسیال در یک محفظه مثلثی با تیغه گرمازا. مجلۀ مهندسی مکانیک دانشگاه تبریز، د. 47، ش. 2، ص 59-67، 1396.
[9]  Sint N. K. C., Choudhury I. A., Masjuki H. H., Aoyama H., Theoretical analysis to determine the efficiency of a CuO-water nanofluid based-flat plate solar collector for domestic solar water heating system in Myanmar, Solar Energy, Vol. 155, pp. 608-619, 2017.
[10]             Kiliç F., Menlik T., Sözen A., Effect of titanium dioxide/water nanofluid use on thermal performance of the flat plate solar collector, Solar Energy, Vol. 164, pp. 101-108, 2018.
[11]             Genc A. M., Ezan M. A., Turgut A., Thermal performance of a nanofluid-based flat plate solar collector: A transient numerical study, Applied Thermal Engineering, Vol. 130, pp. 395-407, 2018.
[12]             Hawwash A. A., Abdel Rahman A. K., Nada S. A., Ookawara S., Numerical Investigation and Experimental Verification of Performance Enhancement of Flat Plate Solar Collector Using Nanofluids, Applied Thermal Engineering, Vol. 130, pp. 363-374, 2018.
[13]             Sheikholeslami, M., Jafaryar, M., Li, Z., Nanofluid turbulent convective flow in a circular duct with helical turbulators considering CuO nanoparticles, International Journal of Heat and Mass Transfer, Vol. 124, pp. 980–989, 2018
[14]             Gugulothu R., Reddy K. V. K., Somanchi N. S., Adithya E. L., A Review on Enhancement of Heat Transfer Techniques, Materials Today: Proceedings, Vol. 4, No. 2, Part A, pp. 1051-1056, 2017.
[15]             Farnam M., Khoshvaght-Aliabadi M., Asadollahzadeh M. J., Heat transfer intensification of agitated U-tube heat exchanger using twisted-tube and twisted-tape as passive techniques, Chemical Engineering and Processing - Process Intensification, Vol. 133, pp. 137-147, 2018.
[16]             Abed A. M., Majdi H. Sh., Hussein Z. Fadhil D., Abdulkadhim A., Numerical analysis of flow and heat transfer enhancement in a horizontal pipe with P-TT and V-Cut twisted tape, Case Studies in Thermal Engineering, Vol. 12, pp. 749-758, 2018.
[17]             Kumar B. Prasad N., Investigation of twisted tape inserted solar water heaters—heat transfer, friction factor and thermal performance results, Renewable Energy, Vol. 19, No. 3, pp. 379-398, 2000.
[18]             Jaisankar S., Radhakrishnan T. K., Sheeba K. N., Experimental studies on heat transfer and friction factor characteristics of thermosyphon solar water heater system fitted with spacer at the trailing edge of twisted tapes, Applied Thermal Engineering, Vol. 29, No. 5, pp. 1224-1231, 2009.
[19]             Saravanan A., Senthilkumaar J. S., Jaisankar S., Performance assessment in V-trough solar water heater fitted with square and V-cut twisted tape inserts, Applied Thermal Engineering, Vol. 102, pp. 476-486, 2016.
[20]             Sundar L. S., Singh M. K., Punnaiah V., Sousa A. C. M., Experimental investigation of Al2O3/water nanofluids on the effectiveness of solar flat-plate collectors with and without twisted tape inserts, Renewable Energy, Vol. 119, pp. 820-833, 2018.
[21]             Gunjo D. G., Mahanta P., Robi P. S., CFD and experimental investigation of flat plate solar water heating system under steady state condition, Renewable Energy, Vol. 106, pp. 24-36, 2017.
[22]             Bejan A., Turbulent Boundary Layer Flow, in: Convection Heat Transfer, Eds., pp. 320-368: John Wiley & Sons, Inc., 2013.
[23]             ANSYS® Academic research, release 18.1, ANSYS FLUENT, Theory Guide, ANSYS, Inc.
[24]             Versteeg H. K., Malalasekera W., An Introduction to Computational Fluid Dynamics: The Finite Volume Method, second ed., Pearson/Prentice Hall, Harlow, England, 2007.
[25]             Shih T.-H., Liou W. W., Shabbir A., Yang Z., Zhu J., A new k-ϵ eddy viscosity model for high Reynolds number turbulent flows, Computers & Fluids, Vol. 24, No. 3, pp. 227-238, 1995.
[26]             Menter F. R., Two-equation eddy-viscosity turbulence models for engineering applications, AIAA journal, Vol. 32, No. 8, pp. 1598-1605, 1994.
[27]             Hasan M. I., Rageb A. M. A., Yaghoubi M., Investigation of a Counter Flow Microchannel Heat Exchanger Performance with Using Nanofluid as a Coolant, Journal of Electronics Cooling and Thermal Control, Vol.2 No. 3, pp. 35-43, 2012.
[28]             Verma S. K., Tiwari A. K., Progress of nanofluid application in solar collectors: A review, Energy Conversion and Management, Vol. 100, pp. 324-346, 2015.
[29]             Webb R. L., Performance evaluation criteria for use of enhanced heat transfer surfaces in heat exchanger design, International Journal of Heat and Mass Transfer, Vol. 24, No. 4, pp. 715-726, 1981.
[30]             Kim D., Kwon Y., Cho Y., Li C., Cheong S., Hwang Y., Lee J., Hong D., Moon S., Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions, Current Applied Physics, Vol. 9, No. 2, Supplement, pp. 119-123, 2009.