[1] Poživil J., Use of expansion turbines in natural gas pressure reduction stations, Acta, Montanistica Slovaca, Vol. 9(3), pp. 258-260, 2004.
[2] Rami E. G., Jean-Jacques B., Bruno D. and François M., Modelling of a pressure regulator, International Journal of Pressure Vessels and Piping, Vol. 84, pp. 234-243, 2007.
[3] Farzaneh-Gord M., Arabkoohsar A., Deymi Dasht-bayaz c M., Farzaneh-Kord V., Feasibility of accompanying uncontrolled linear heater with solar system in natural gas pressure drop stations, Energy, Vol. 41, pp. 420-428, 2012.
[4] Arabkoohsar A., Farzaneh-Gord M., Deymi-Dashtebayaz M., Machado L., Koury R.N.N., A new design for natural gas pressure reduction points by employing a turbo expander and a solar heating set, Renewable Energy, Vol. 81 pp. 239-250, 2015.
[5] Farzaneh-Gord M., Arabkoohsar A., Deymi Dasht-bayaz M., Machado L., Koury R.N.N., Energy and exergy analysis of natural gas pressure reduction points equipped with solar heat and controllable heaters, Renewable Energy, Vol. 72, pp. 258-270, 2014.
[6] Zabihi A. and Taghizadeh M., Feasibility study on energy recovery at Sari-Akand city gate station using turboexpander, Journal of Natural Gas Science and Engineering, Vol. 35, pp. 152-159, 2016.
[7] Hosseini S., Ahmed K. and Tade M. O., CFD model of a methane fueled single cell SOFC stack for analyzing the combined effects of macromicro structural parameters," Journal of Power Sources, vol. 234, pp. 180-196, 2013.
[8] Andersson M., Yuan J. and Sunden B., SOFC modeling considering hydrogen and carbon monoxide as electrochemical reactants, Journal of Power Sources, Vol. 232, pp. 42-54, 2013.
[9] P. Tippawan and Arpornwichanop A., Energy and exergy analysis of an ethanol reforming process for solid oxide fuel cell applications, Bioresource Technology, Vol. 157, pp. 231-239, 2014.
[10] ج. پیرکندی, م. قاسمی و م. ح. حامدی, مقایسهی عملکرد سیستمهای هیبریدی مستقیم و غیر مستقیم توربین گاز و پیل سوختی اکسید جامد از دیدگاه ترمودینامیکی و اگزرژی، مجله ی علمی پژوهشی مهندسی مکانیک مدرسشماره 12، ص 117-1391.
[11] Chan S. H., HoH K. and Tian Y., Modelling of simple hybrid solid oxide fuel cell and gas turbine power plant, Journal of Power Sources, Vol. 109, pp. 111-120, 2002.
[12] Motahar S. and Alamrajabi A. A., Exergy based performance analysis of a solid oxide fuel cell and steam injected gas turbine hybrid power system, International Journal of Hydrogen Energy, Vol. 34, pp. 2396-2407, 2009.
[13] Bavarsad P. G., Energy and Exergy Analysis of Internal Reforming Solid Oxide Fuel Cell-Gas Turbine Hybrid System, International Journal of Energy Research, Vol. 32, pp. 4591-4549, 2007.
[14] Pirkandi J., Mahmoodi M. and Ommian M., An optimal configuration for a solid oxide fuel cell-gas turbine (SOFC-GT) hybrid system based on thermo-economic modelling,
Journal of Cleaner Production, V
o1. 144, pp. 375-386, 2017.
[15] Pirkandi J., Mahmoodi M. and Ommian M., Thermo-economic performance analysis of a gas turbine generator equipped with a pressurized and an atmospheric solid oxide fuel cell,
Energy Conversion and Management, V
ol. 136, pp. 249-261, 2017.
[16] Neseli M. A., Ozgener O. and Ozgener L., Thermo-mechanical exergy analysis of Marmara Eregli natural gas pressure reduction station (PRS): An application, Renewable and Sustainable Energy Reviews, Vol. 77, pp. 80–88, 2017.
[17] Singhal S., Advances in solid oxide fuel cell technology, Solod state ionics, Vol. 135, No. 1, pp. 305-313, 2000.
[18] Howard C., Oosthuizen P. and Peppley B., An investigation of the performance of a hybrid turboexpander-fuel cell system for power recovery at natural gas pressure reduction stations, Applied Thermal Engineering, Vol. 31, pp. 2165-2170, 2011.