مطالعه تجربی تاثیر پارامترهای هندسی و سیالاتی بر اندازه ریزقطرات در دستگاه‌های ریزسیالاتی با هندسه‌ی تمرکز جریانی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی مکانیک ، دانشگاه علم و صنعت ایران، تهران

2 دانشکده مهندسی مکانیک ، دانشگاه علم و صنعت ایران، تهران، ایران

3 دانشکده داروسازی، دانشگاه علوم پزشکی شهید بهشتی، تهران، ایران

چکیده

یکی از مهم‌ترین چالش­های داروسازان، عدم توانایی در تولید حامل­های دارویی با دقت و کنترل بالا در تعداد مشخص می­باشد، از این رو تولید ذرات دارویی برپایه­ی دستگاه­های ریزسیالاتی به عنوان وسیله­ای تطبیق­پذیر با طیف گسترده­ای از کاربردها مورد استفاده می­باشد. در این پژوهش هدف، تولید ریزقطرات به عنوان پایه­ای برای حامل­های دارورسانی، به کمک دستگاه­های ریزسیالاتی با هندسه­ی تمرکز جریانی می­باشد، همچنین، تأثیر پارامترهای هندسی، مکانیکی و مشخصه­های سیال بر قطر ریزقطرات تولیدی، (با استفاده از دو نوع ماده­ی پارافین روغنی و هگزادکان به­صورت جداگانه به عنوان سیال فاز پیوسته و آب به عنوان سیال گسسته) به­صورت تجربی مورد ارزیابی قرار گرفته شده است. نتایج نشان دادند که با افزایش زاویه­ی بین مجرای اصلی و فرعی و افزایش عرض مجراها قطر ریزقطرات به ترتیب به صورت نمایی و نسبتاً خطی افزایش یافته و در مقابل با کاهش نسبت لزجت به کشش سطحی سیال، قطر ریزقطرات تولیدی به­صورت نسبتاً خطی کاهش می­یابد. به­علاوه در تمامی بررسی­ها هنگام تغییر رژیم تشکیل ریزقطره جهش در تغییرات اتفاق می­افتد و شاهد افزایش نرخ جریان فاز پیوسته وکاهش قطر ریزقطرات تولیدی هستیم.

کلیدواژه‌ها

موضوعات


[1]    Zhang Y., Liu D., Zhang H. and Santos H.A., Microfluidic mixing and devices for preparing nanoparticulate drug delivery systems. Microfluidics for Pharmaceutical Applications, pp. 155-177, 2019.
[2]    Lee T.Y., Choi T.M., Shim T.S., Frijns R.A. and Kim S.H., Microfluidic production of multiple emulsions and functional microcapsules. Lab on a Chip16(18), pp.3415-3440, 2016.
[3]   Alam M.K., Emmanuel K., Heng Z., Changqing Y., Cheuk-Wing L., Tao X. and Mengsu Y., Recent advances in microfluidic technology for manipulation and analysis of biological cells (2007–2017). Analytica chimica acta, 2018.
[4] Cui P. and Wang S., Applications of microfluidic chip technology in pharmaceutical analysis: A review. Journal of Pharmaceutical Analysis, 2018.
[5]   Yang R.J., Fu L.M. and Hou H.H., Review and perspectives on microfluidic flow cytometers. Sensors and Actuators B: Chemical266, pp.26-45, 2018.
[6] Anna S.L., Droplets and bubbles in microfluidic devices. Annual Review of Fluid Mechanics48, pp.285-309, 2016.
[7] Gupta A., Matharoo H.S., Makkar D. and Kumar R., Droplet formation via squeezing mechanism in a microfluidic flow-focusing device. Computers & Fluids100, pp.218-226, 2014.
[8]     Thorsen T., Roberts R.W., Arnold F.H. and Quake S.R., Dynamic pattern formation in a vesicle-generating microfluidic device. Physical review letters86(18), p.4163, 2001.
[9]     Teh S.Y., Lin R., Hung L.H. and Lee A.P., Droplet microfluidics. Lab on a Chip8(2), pp.198-220, 2008.
[10]   Zhu P. and Wang L., Passive and active droplet generation with microfluidics: a review. Lab on a Chip17(1), pp.34-75, 2017.
[11]   Tice J.D., Ismagilov R.F. and Zheng B., August. Forming droplets in microfluidic channels with alternating composition and application to indexing concentrations in droplet-based assays. Anal. Chem, vol. 76, no. 17, pp. 4977–4982, 2004.
[12]   Umbanhowar P.B., Prasad V. and Weitz D.A., Monodisperse emulsion generation via drop break off in a coflowing stream. Langmuir16(2), pp.347-351, 2000.
[13]   Utada A.S., Chu L.Y., Fernandez-Nieves A., Link D.R., Holtze C. and Weitz D.A., Dripping, jetting, drops, and wetting: The magic of microfluidics. Mrs Bulletin32(9), pp.702-708, 2007.
[14]   Gañán-Calvo A.M., Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams. Physical Review Letters80(2), p.285, 1998.
[15]   Hein M., Fleury J.B. and Seemann R., Coexistence of different droplet generating instabilities: new breakup regimes of a liquid filament. Soft Matter11(26), pp.5246-5252, 2015.
[16]   Yasuda M., Goda T., Ogino H., Glomm W.R. and Takayanagi H., Preparation of uniform monomer droplets using packed column and continuous polymerization in tube reactor. Journal of colloid and interface science349(1), pp.392-401, 2010.
[17]   Anna S.L., Droplets and bubbles in microfluidic devices. Annual Review of Fluid Mechanics48, pp.285-309, 2016.
[18]   Cristini V. and Tan Y.C., Theory and numerical simulation of droplet dynamics in complex flows—a review. Lab on a Chip4(4), pp.257-264, 2004.
[19]   Abate A.R. and Weitz D.A., High‐order multiple emulsions formed in poly (dimethylsiloxane) microfluidics. Small5(18), pp.2030-2032, 2009.
[20]   Utada A.S., Lorenceau E.L., Link D.R., Kaplan P.D., Stone H.A. and Weitz D.A., Monodisperse double emulsions generated from a microcapillary device. Science308(5721), pp.537-541, 2005.
[21]   Seo M., Paquet C., Nie Z., Xu S. and Kumacheva E., Microfluidic consecutive flow-focusing droplet generators. Soft Matter3(8), pp.986-992, 2007.
[22]   Chu L.Y., Utada A.S., Shah R.K., Kim J.W. and Weitz D.A., Controllable monodisperse multiple emulsions. Angewandte Chemie International Edition46(47), pp.8970-8974, 2007.
[23]   Panizza P., Engl W., Hany C. and Backov R., Controlled production of hierarchically organized large emulsions and particles using assemblies on line of co-axial flow devices. Colloids and Surfaces A: Physicochemical and Engineering Aspects312(1), pp.24-31, 2008.
[24]   Utada A.S., Fernandez-Nieves A., Stone H.A. and Weitz D.A., Dripping to jetting transitions in coflowing liquid streams. Physical review letters99(9), p.094502, 2007.
[25]   Collins R.T., Jones J.J., Harris M.T. and Basaran O.A., Electrohydrodynamic tip streaming and emission of charged drops from liquid cones. Nature Physics4(2), p.149, 2008.
[26]   Xu J.H., Li S.W., Tan J. and Luo G.S., Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping. Microfluidics and Nanofluidics5(6), pp.711-717, 2008.
[27]   Romero P.A. and Abate A.R., Flow focusing geometry generates droplets through a plug and squeeze mechanism. Lab on a Chip12(24), pp.5130-5132, 2012.
[28]   De Menech M., Garstecki P., Jousse F. and Stone H.A., Transition from squeezing to dripping in a microfluidic T-shaped junction. journal of fluid mechanics595, pp.141-161, 2008.
 [29]  Abate A.R., Mary P., van Steijn V. and Weitz D.A., Experimental validation of plugging during drop formation in a T-junction. Lab on a Chip12(8), pp.1516-1521, 2012.