بررسی ضریب انتقال جرم در یک سلول الکتروویننینگ صنعتی در شرایط کاری متفاوت

نوع مقاله : پژوهشی کامل

نویسندگان

1 دانشجوی دکترا، گروه مهندسی مکانیک، دانشگاه یزد، یزد، ایران

2 دانشیار، گروه مهندسی مکانیک، دانشگاه یزد، یزد، ایران

چکیده

الکتروویننینگ، فرایند نشاندن یون‌های مس محلول در الکترولیت داخل سلول به روی کاتد توسط ایجاد جریان الکتریکی است. در پژوهش حاضر، با استفاده از شبیه‌سازی سلول الکتروویننینگ مجتمع مس میدوک به بررسی ضریب انتقال جرم روی تمام سطح کاتد پرداخته شده است. شبیه‌سازی این سلول‌ها با استفاده از دینامیک سیالات و نرم‌افزار انسیس‌سی‌اف‌ایکس انجام شده است. تعداد 13 معادله دیفرانسیل جزئی سیالاتی باشرایط مرزی خاص توسط این نرم-افزار حل شده است. مقدار ضریب انتقال جرم کاتد در سلول واقعی مس بااستفاده از اندازه‌گیری جرم مس ورقهای کاتد تولیدی هر سلول و شرایط کاری سلول در شرایط واقعی بدست آمد. نتایج نشان از اختلاف 9/1 درصدی مقدار واقعی در مس میدوک و مقدار مدل‌سازی می‌دهد. با این مدل‌سازی مقادیر ضریب انتقال جرم برای فواصل بین الکترودی مختلف به‌دست آمد، که در مقایسه روابط آزمایشگاهی مربوط به جریان سیال آشفته‌غیر‌توسعه‌یافته در سلول با مقدار انحراف 5/0 درصد نیز اعتبارسنجی شد. از این مدل ضریب انتقال جرم برای حالات کاربردی مختلف مانند حالت اسپری حباب اکسیژن از ورودی الکترولیت با کسر جرمی‌های مختلف، تغییر دمای و تغییر دبی الکترولیت ورودی تعیین شده است.

کلیدواژه‌ها

موضوعات


[1]     Al Shakarji R., Mechanisms of Acid Mist Formation in Electrowinning. PhD. thesis, James Cook University, 2012.
[2]     Sigrist L. and Dossenbach O., Mass Transport in Electrolytic Cells with Gas Sparging. International Journal Heat and Mass Transfer, Vol. 22, p. 7, 1979.
[3]     Raju G. J. V. J., Venkateswarlu P., Rao S. S., and Sarma C. B., Effect of Longitudinal Distance of Electrode on the Ionic mass Transfer on the Confining Wall of a Stirred Vessel. Indian J. Technol., Vol. 5, p. 5, 1979.
[4]     Raju C. R., Raju G. J., and Rao C. V., Effect of pulsation on mass transfer coefficients Ionic mass transfer. indian J. Technol., Vol. 5, p. 5, 1967.
[5]     Fisher K. G. and Hughes R. G., Application of Periodic Current Reversal (P.C.R.) to Electrolytic Copper Refining at Mufulira. Trans. Inst. Min. metall, p. 12, 1971.
[6]     Rao V. P., Mass Transfer Cylinders Rotating about Parallel Axes. Ph. D. thesis, Andhra university, 1974.
[7]     Graydon J. and Kirk D., Suspension Codeposition in Electrowinning Cells: The Role of Hydrodynamics. Can. J. Chem. Eng, Vol. 69, p. 7, 2001.
[8]     Najim S. T., Estimation of Mass Transfer Coefficient for Copper Electrowinning Process. Journal of Engineering, Vol. 22, p. 11, 2016.
[9]     Beukes N. T. and Badenhorst J., Copper Electrowinning: Theoretical and Practical Design. presented at the Hydrometallurgy Conference 2009, The Southern African Institute of Mining and Metallurgy, 2009.
[10] Cifuentes L. and Arriagada P., Copper Electrowinning in a Moving-bed Cell Based on Reactive Electrodialysis. Revista de Metalurgia, p. 11, 2008.
[11] Filzwieser A., Modelling of the Processes Close to Cathodes in Copper Electrolysis (Modellierung der kathodennahen Vorgänge in der Kupferelektrolyse). Ph. D. thesis, Montanuniversität Leoben, 2000.
[12] Filzwieser A., Hein K., and Mori G., Current Density Limitation and Diffusion Boundary Layer Calculation Using CFD Method. JOM, Vol. 54, pp. 28-31, 2002.
[13] Leahy M. J. and Schwarz M. P., Experimental validation of a computational fluid dynamics model of copper electrowinning. Metallurgical Materials Transactions B, Vol. 41, No. 6, pp. 1247-1260, 2010.
[14] Schwarz M. P., Improving Zinc Processing Using Computational Fluid Dynamics Modelling –Successes and Opportunities. Minerals Engineering, Vol. 30, pp. 12-18, 2012.
[15] Leahy M. J. and Schwarz M. P., Flow and mass transfer modelling for copper electrowinning: development of instabilities along electrodes. Hydrometallurgy, Vol. 147-148, pp. 41-53, 2014.
[16] Pourahmadi S. A. A. and Talebi S., Hydrodynamic Simulation of Two Phase Flow in an Industrial Electrowinning Cell. Modares Mechanical Engineering, Vol. 20, No. 1, pp. 1-12, 2020.
[17] "ANSYS CFX-Solver Theory Guide, Release 15," ed, 2016.
[18] König J., Velocity Measurements Inside the Concentration Boundary Layer during Copper-Magneto-Electrolysis Using a Novel Laser Doppler Profile Sensor. Electrochimica Acta, Vol. 56, No. 17, pp. 6150-6152,2011
[19] Geankoplis C., Transport Processes and Separation Process Principles. PTR Prentice Hall, 2003.
[20] Brennen C. E., Fundamentals of multiphase flow. Cambridge university press, 2005.
[21] Celik I. B., "Introductory turbulence modeling," ed: Virginia, Western Virginia University, 1999.
[22] Gendron A. and Ettel V., Hydrodynamic Studies in Natural and Forced Convection Electrowinning Cells. The Canadian Journal of Chemical Engineering, Vol. 53, No. 1, pp. 36-40, 1975.
[23] Werner J. M., Modeling and Validation for Optimization of Electrowinning Performance. Doctor of Philosophy, The University of Utah, 2017.
[24] Sutherland W., The Viscosity of Gases & Molecular Force. Philosophical Magazine, Vol. 36, pp. 507-531, 1893.
[25] Moats M. S., Hiskey J. B.,., The Effect of Copper, Acid, and Temperature on the Diffusion Coefficient of Cupric Ions in Simulated Electrorefining Electrolytes. Hydrometallurgy, Vol. 56, No. 3, pp. 255-268, 2000.
[26] Pourtousi M.Combination of Computational Fluid Dynamics (CFD)&Adaptive Neuro-fuzzy System (ANFIS) for Prediction of the Bubble Column Hydrodynamics. Powder Technology, Vol. 274, pp. 466–481, 2015.