[1] Govindu N.K., & Babski-Reeves K. Effects of personal, psychosocial and occupational factors on low back pain severity in workers. International Journal of Industrial Ergonomics, Vol. 44, 335-341, 2014.
[2] Shieh S.-H., Sung F.-C., Su C.-H., Tsai Y., and Chia-Rong Hsieh V. Increased low back pain risk in nurses with high workload for patient care: A questionnaire survey. Taiwanese Journal of Obstetrics & Gynecology, Vol. 55, 525–529, 2016.
[3] محسنی بندپی م.ع.، فخری م.، احمدشیروانی م.، باقری نسامی م. و خلیلیان ع. بررسی اپیدمیولوژیک کمردرد در پرستاران. مجلة دانشگاه علوم پزشکی بابل، سال هفتم، شمارة ۲ (پیدرپی ۲۶)، صفحه ۳۵ الی ۴۰، 1384.
[4] O’Sullivan L., Nugent R., and Van Der Vorm J. Standards for the safety of exoskeletons used by industrial workers performing manual handling activities: A contribution from the Robo-Mate project to their future development. Procedia Manufacturing, Vol. 3, 1418–1425, 2015.
[5] کریم ع. طراحی کنترلکنندهی غیرخطی بهینهی مقاوم بالاتنهی برونپوش اسکلت خارجی با هدف افزایش توان. پایاننامه کارشناسی ارشد، دانشگاه کاشان، 1393.
[6] Tran H., Cheng H., Rui H., Lin X., Duong M., and Chen Q. Evaluation of a Fuzzy-Based Impedance Control Strategy on a Powered Lower Exoskeleton. International Journal of Social Robotics, Vol. 8, 103-123, 2015.
[7] Lu R., Li Z., Su C.-Y., and Xue, A. Development and Learning Control of a Human Limb With a Rehabilitation Exoskeleton. IEEE Transactions on Industrial Electronics, Vol. 61, 3776-3785, 2014.
[8] Stopforth, R. Customizable Rehabilitation Lower Limb Exoskeleton System. International Journal of Advanced Robotic Systems, Vol. 9, NO. 4, 152-158, 2012.
[9] Sanz-Merodio D., Cestari M., Arevalo J.C., Carrillo X.A., and Garcia E. Generation and control of adaptive gaits in lower-limb exoskeletons for motion assistance. Advanced Robotics, Vol. 28, 32-338, 2014.
[10] Cruciger O., Schildhaue T.A., Meindl R.C., Tegenthoff M., Schwenkreis P., Citak M., & Aach M. Impact of locomotion training with a neurologic controlled hybrid assistive limb (HAL) exoskeleton on neuropathic pain and health related quality of life (HRQoL) in chronic SCI: a case study. Disability and Rehabilitation Assistive Technology, Vol. 11, 529-534, 2014.
[11] Agarwal P., Fox J., Yun Y., O’Malley M.-K., and Deshpande A.D. An index finger exoskeleton with series elastic actuation for rehabilitation: Design, control and performance characterization. The International Journal of Robotics Research, Vol. 34, 1747-1772, 2015.
[12] Chen B., Ma H., Qin L.-Y., Gao F., Chan K.-M., Law S.-W., Qin L., and Liao W.-H. Recent developments and challenges of lower extremity exoskeletons. Journal of Orthopaedic Translation, Vol. 5, 26-37, 2016.
[13] Wu Q., Wang X., Du F., and Zhang X. Design and Control of a Powered Hip Exoskeleton for Walking Assistance. International Journal of Advanced Robotic Systems, Vol. 12, NO. 3, 18-28, 2014.
[14] Desbrosses K. Manual handling tasks performed with an upper limbs exoskeleton at the workplace. Annals of Physical and Rehabilitation Medicine, Vol. 60, 100-101, 2017.
[15] Hu J., Xu X., and Zhu K. Arm Exoskeleton Based on Model Predictive Control with Input/Output Feedback Linearization. Journal of Medical Imaging and Health Informatics, Vol. 3, 432-439, 2013.
[16] Luna C.O., Rahman M.H., Archambault P., and Zhu W.-H. Virtual decomposition control of an exoskeleton robot arm. Robotica, Vol. 34, 1747-1772, 2014.
[17] Huang J., Huo W., Xu W., Mohammed S., and Amirat Y. Control of Upper-Limb Power-Assist Exoskeleton Using a Human-Robot Interface Based on Motion Intention Recognition. IEEE Transactions on Automation Science and Engineering, Vol. 12, 1257–1270, 2015.
[18] Garrido J., Yu W., and Li X. Modular design and control of an upper limb exoskeleton. Journal of Mechanical Science and Technology, Vol. 30, 2265–2271, 2016.
[19] Witkowski M., Cortese M., Cempini M., Mellinger J., Vitiello N., and Soekadar, S.R. Enhancing brain-machine interface (BMI) control of a hand exoskeleton using electrooculography (EOG). Journal of NeuroEngineering and Rehabilitation, Vol. 11, 165–170, 2014.
[20] Leonardis D., Barsotti M., Loconsole C., Solazzi M., Troncossi M., Mazzotti C., Castelli V.P., Procopio C., Lamola G., Chisari C., Bergamasco M., and Frisoli A. An EMG-Controlled Robotic Hand Exoskeleton for Bilateral Rehabilitation. IEEE Transactions on Haptics, Vol. 8, 140–151, 2015.
[21] Murray S.A., Ha K.H., Hartigan C., and Goldfarb M. An Assistive Control Approach for a Lower-Limb Exoskeleton to Facilitate Recovery of Walking Following Stroke. IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 23, 441-449, 2014.
[22] Anwar T., and Al Juamily A. Adaptive Trajectory Control to Achieve Smooth Interaction Force in Robotic Rehabilitation Device. Procedia Computer Science, Vol. 42, 160-167, 2014.
[23] Lee J.-W., Kim H., Jang J., and Park S. Virtual model control of lower extremity exoskeleton for load carriage inspired by human behavior. Auton Robot, Vol. 38, 211–223, 2014.
[24] تقیراد ح. ر. مقدمهای بر کنترل مدرن (ویرایش سوم)، انتشارات دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، 1393.
[25] Tanaka K., and Wang H.O. Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. John Wiley & Sons incorporated, New York, 2001.
[26] Kumar Tyagi A. MATLAB and Simulink for Engineers. Oxford University Press, London, 2012. ISBN: 978-0-19-807244-7.