بررسی تشکیل ترکیبات بین فلزی در پوشش کامپوزیتی Ni-Ti ایجاد شده به روش پاشش سرد

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، مهندسی مواد و متالورژی، دانشگاه علم و صنعت ایران، تهران، ایران

2 استاد، مهندسی مواد و متالورژی، دانشگاه علم و صنعت ایران، تهران، ایران

چکیده

هدف این پژوهش امکان‌سنجی ایجاد پوشش کامپوزیتی Ni-Ti به روش پاشش سرد و بررسی تشکیل ترکیبات بین‌فلزی از عملیات حرارتی این پوشش‌ها می‌باشد. برای ایجاد پوشش کامپوزیتی، دو پودر نیکل و تیتانیم با نسبت حجمی برابر به صورت فیزیکی مخلوط شدند و با پاشش این مخلوط پودری، پوشش کامپوزیتی با نسبت اتمی Ti8/64 – Ni2/35 بدست آمد. این پوشش تحت آنیل در دماهای ̊C740، ̊C900 و یک عملیات حرارتی ترکیبی دو‌ مرحله‌ای در دماهای 740 و ̊C960 و در زمان‌های مختلف قرار گرفت و تشکیل ترکیبات بین فلزی مطالعه شد. مطالعات ریزساختار نشان داد که در این پوشش هر سه ترکیب تعادلی بین‌فلزی Ni3Ti ، Ti2Ni و NiTi در همه دماهای عملیات حرارتی تشکیل می‌شوند و با اتمام واکنشگرها میزان Ni3Ti کاهش می‌یابد. همچنین نتایج مطالعات نشان داد که تشکیل ترکیبات بین فلزی در پوشش پاشش شده با روش پاشش سرد، سینتیک سریعتری نسبت به نمونه‌های متداول پرس در شرایط مشابه آنیل دارد که این موضوع با روند تسهیل شده نفوذ درهم، ناشی از عیوب ریزساختاری و تغییر شکل شدید در پاشش سرد مرتبط است.

کلیدواژه‌ها

موضوعات


[1]  Assadi H, Kreye H, Gärtner F, and Klassen T, Cold spraying – A materials perspective, Acta Materialia, Vol. 116, pp. 382-407, 2016.
[2]  Koivuluoto H, Coleman A, Murray K, Kearns M, and Vuoristo P, High Pressure Cold Sprayed (HPCS) and Low Pressure Cold Sprayed (LPCS) Coatings Prepared from OFHC Cu Feedstock: Overview from Powder Characteristics to Coating Properties, Journal of thermal spray technology, Vol. 21, No. 5, pp. 1065-1075, 2012
[3]  Novoselova T, Fox P, Morgan R, and O'Neill W, Experimental study of titanium/aluminum deposits produced by cold gas dynamic spray, Surface and Coating Technology, Vol. 200, No. 8, pp. 2775-2783, 2006.
[4]  Moridi A, Hassani-Gangaraj S. M, Guagliano M, and Dao M, Cold spray coating: review of material systems and future perspectives, Surface Engineering, Vol. 30, No. 6, pp. 369-395, 2014.
[5]  Ansari M, Golzar M, and Behravesh A. H, Experimental studies of training stress effect on NiTi SMA performance in higher and lower stress than training stress, Modares mechanical engineering, Vol. 13, No. 10, pp. 14-24, 2013.
[6]  Zanaboni E, One Way and Two Way-Shape Memory Effect: Thermo-Mechanical Characterization of Ni-Ti Wires, PhD thesis, Universita degli Studi di Pavia, Pavia, Italy, 2008.
[7]  . Mokgalaka M. N, Pityana S. L, Popoola P. A. I, and Mathebula T, NiTi Intermetallic Surface Coatings by Laser Metal Deposition for Improving Wear Properties of Ti-6Al-4V Substrates, Advances in Materials Science and Engineering, 2014.
[8]  Zhou Y, Li C. J, Yang G. J., Wang H. D, and Li G, Effect of self-propagating high-temperature combustion synthesis on the deposition of NiTi coating by cold spraying using mechanical alloying Ni/Ti powder, Intermetallics, Vol. 18, No. 11, pp. 2154-2158, 2010.
[9]  Tria S, Elkedim O, Hamzaoui R, Guo X, Bernard F, Millot N, and Rapaud O, Deposition and characterization of cold sprayed nanocrystalline NiTi, Powder Technology, Vol. 210, No. 2, pp.181-188, 2010.
[10]             Novoselova T, Celotto S, Morgan R, Fox P, and O’neill W, Formation of TiAl intermetallics by heat treatment of cold-sprayed precursor deposits, Journal of Alloys and Compounds, Vol. 436, No. 1, pp. 69-77, 2007.
[11]             Lee H, Shin H, and Ko K, Effects of Gas Pressure of Cold Spray on the Formation of Al-Based Intermetallic Compound, Journal of thermal spray technology, Vol. 19, No. 1, pp. 102-109, 2010.
[12]             Zhang Q, Li C. J, Wang X. R, Ren Z. L, Li C. X, and Yang G.J, Formation of NiAl intermetallic compound by cold spraying of ball-milled Ni/Al alloy powder through post annealing treatment, Journal of thermal spray technology, Vol. 17, No. 5, pp. 715-720, 2008.
[13]             Bacciochini A, Radulescu M. I, Charron-Tousignant Y, Van Dyke J, Nganbe M, Yandouzi M, Lee J.J, and Jodoin B, Enhanced reactivity of mechanically-activated nano-scale gasless reactive materials consolidated by colds pray, Surface and Coating Technology, Vol. 206, No. 21, pp. 4343-4348, 2012.
[14]             Bacciochini A, Bourdon-Lafleur S, Poupart C, Radulescu M, and Jodoin B, Ni-Al Nanoscale energetic materials: phenomena involved during the Manufacturing of Bulk Samples by Cold Spray, Journal of thermal spray technology, Vol. 23, No. 7, pp. 1142–1148, 2014.
[15]             Dean S. W, Potter J. K, Yetter R. A, Eden T. H, Champagne V, and Trexler M, Energetic intermetallic materials formed by cold spray, Intermetallics, Vol. 43, pp. 121-130, 2013.
[16]             Dean S. W, Energetic intermetallic materials formed by cold spray, PhD thesis, The Pennsylvania State University, USA, 2015.
[17]             Wang H. T, Li C. J, Yang G. J, and Li C. A, Cold spraying of Fe/Al powder mixture: Coating characteristics and influence of heat treatment on the phase structure, Applied Surface Science, Vol. 255, No. 5, pp. 2538-2544, 2008.
[18]             Ko K. H, Lee H, and Choi J. O, Effect of Sn particle size on the intermetallic compound formations of cold sprayed Sn–Ni coatings, Applied Surface Science, Vol. 257, No. 7, 2970-2977, 2011.
[19]             Bitzer M, Rauhut N, Mauer G, Bram M, Vaßen R. X, Buchkremer HP, Stöver D, and Pohl M, Cavitation-resistant NiTi coatings produced by low-pressure plasma spraying (LPPS), Wear, Vol. 328–329, pp. 369-377, 2015.
[20]             Momeni S and Tillmann W, Investigation of the self-healing sliding wear characteristics of NiTi-based PVD coatings on tool steel, Wear, Vol. 368–369, pp. 53-59, 2016.
[21]             Sun C, Wang Y, Su Q, Guo Z, and Shi L, The tribological property and microstructure of Ni-Ti Coating Prepared by electrodeposition and heat treatment, Advances in Materials Science and Engineering, Vol. 6, pp. 6 , 2016.
[22]             Hinotani S and Ohmori Y, The microstructure of diffusion-bonded Ti/Ni interface, Japan Institute of Metals, Transactions, Vol. 29, pp. 116-124, 1988.
[23]             Bastin G. F and Rieck G. D, Diffusion in the titanium-nickel system: II. Calculations of chemical and intrinsic diffusion coefficients, Metallurgical Transactions, Vol. 5, No. 8, pp. 1827-1831, 1974.
[24]             Khosravi G, Heydarzadeh Sohi M, Ghasemi H. M, and Vafadar A. Kh, Characterisation of Ni–Ti intermetallic coatings formed on Cp titanium by diffusion treatment, International Journal of Surface Science and Engineering, Vol. 9, No. 1 , pp. 43-54, 2015.
[25]             Bastin G. F and Rieck G. D, Diffusion in the titanium-nickel system: I. occurrence and growth of the various intermetallic compounds, Metallurgical Transactions, Vol. 5 No. 8, pp. 1817-1826, 1974.
[26]             Novák P, Pokorný P, Vojtěch V, Knaislová A, Školáková A, Čapek J, Karlík M, and Kopeček J, Formation of Ni–Ti intermetallics during reactive sintering at 500–650 °C, Materials Chemistry and Physics, Vol. 155, pp. 113-121, 2015.
[27]             Laeng J, Synthesis of Novel Structured NiTi, PhD thesis, University of Western Australia, 2009.
[28]             Nikbakht R, Seyedein S. H, Kheirandish S., Assadi H, and Jodoin B, Asymmetrical bonding in cold spraying of dissimilar materials, Applied Surface Science, Vol. 444, pp. 621-632, 2018.
[29]             Chen C, Xie Y, Huang R, Deng S, Ren Z, and Liao H, On the role of oxide film’s cleaning effect into the metallurgical bonding during cold spray, Materials Letters, Vol. 210, pp. 199-202, 2018.
[30]             Bram M, Ahmad-Khanlou A, Buchkremer H. P, and Stöver D, Powder Metallurgy of NiTi-Alloys with Defined Shape Memory Properties, na, 2001.
[31]             Corbin S. F and Cluff D, Determining the rate of (β-Ti) decay and its influence on the sintering behavior of NiTi, Journal of alloys and compounds, Vol. 487, No 1–2, pp. 179-186, 2009.
[32]             Whitney M, Corbin S. F, and Gorbet R. B., Investigation of the mechanisms of reactive sintering and combustion synthesis of NiTi using differential scanning calorimetry and microstructural analysis, Acta Materialia, Vol. 56, No. 3, pp. 559-570, 2008.