[1] Buxton G. A., Verberg R., Jasnow D. & Balazs A. C. (2005). Newtonian fluid meets an elastic solid: Coupling lattice Boltzmann and lattice-spring models. Physical Review E, 71(5), 056707. doi: 10.1103/PhysRevE.71.056707 71, pp. 056707, 2005.
[2] MacMeccan R. M., Clausen J. R., Neitzel G. P., & Aidun C. K. Simulating deformable particle suspensions using a coupled lattice-Boltzmann and finite-element method. Journal of Fluid Mechanics, 618, 13-39. doi: 10.1017/S0022112008004011, 2009.
[3] Peskin C. S., Numerical analysis of blood flow in the heart. Journal of Computational Physics, 25(3), 220-252. doi: https://doi.org/10.1016/0021-9991(77)90100-0, 1977.
[4] Peskin C. S., Flow patterns around heart valves: A numerical method. Journal of Computational Physics, 10(2), 252-271. doi: https://doi.org/10.1016/0021-9991(72)90065-4, 1972.
[5] Afra B., Nazari M., Kayhani M. H., & Ahmadi G. (2019). Direct numerical simulation of freely falling particles by hybrid immersed boundary – Lattice Boltzmann – discrete element method. Particulate Science and Technology, 1-13. doi: 10.1080/02726351.2018.1536092.
[6] Delouei A. A., Nazari M., Kayhani M., and Ahmadi G., A non-Newtonian direct numerical study for stationary and moving objects with various shapes: An immersed boundary–Lattice Boltzmann approach," Journal of Aerosol Science, vol. 93, pp. 45-62, 2016.
[7] Afra, B., Nazari, M., Kayhani, M. H., Delouei, A. A., & Ahmadi, G. (2018). An immersed boundary-lattice Boltzmann method combined with a robust lattice spring model for solving flow–structure interaction problems. Applied Mathematical Modelling, 55, 502-521. doi: https://doi.org/10.1016/j.apm.2017.10.014
[8] Kang, S. K., & Hassan, Y. A. (2011). A comparative study of direct-forcing immersed boundary-lattice Boltzmann methods for stationary complex boundaries. International Journal for Numerical Methods in Fluids, 66(9), 1132-1158. doi: 10.1002/fld.2304
[9] Goldstein, D., Handler, R., & Sirovich, L. (1993). Modeling a No-Slip Flow Boundary with an External Force Field. Journal of Computational Physics, 105(2), 354-366. doi: https://doi.org/10.1006/jcph.1993.1081
[10] Saiki, E. M., & Biringen, S. (1996). Numerical Simulation of a Cylinder in Uniform Flow: Application of a Virtual Boundary Method. Journal of Computational Physics, 123(2), 450-465. doi: https://doi.org/10.1006/jcph.1996.0036 [11] Mohd-Yusof, J., Combined immersed-boundary/B-spline methods for simulations of ow in complex geometries, Annual Research Briefs. NASA Ames Research Center= Stanford University Center of Turbulence Research: Stanford, pp. 317-327, 1997.
[12] Fadlun E. A., Verzicco R., Orlandi P., & Mohd-Yusof, J., Combined Immersed-Boundary Finite-Difference Methods for Three-Dimensional Complex Flow Simulations. Journal of Computational Physics, 161(1), 35-60. doi: https://doi.org/10.1006/jcph.2000.6484, 2000.
[13] Lima E Silva, A. L. F., Silveira-Neto, A., & Damasceno, J. J. R. (2003). Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method. Journal of Computational Physics, 189(2), 351-370. doi: https://doi.org/10.1016/S0021-9991(03)00214-6
[14] Feng Z.-G. and Michaelides E. E., The immersed boundary-lattice Boltzmann method for solving fluid–particles interaction problems, Journal of Computational Physics, vol. 195, pp. 602-628, 2004.
[15] Lai M.-C. and Peskin C. S., An immersed boundary method with formal second-order accuracy and reduced numerical viscosity, Journal of Computational Physics, vol. 160, pp. 705-719, 2000.
[16] Feng Z.-G., & Michaelides E. E., The immersed boundary-lattice Boltzmann method for solving fluid–particles interaction problems. Journal of Computational Physics, 195(2), 602-628. doi: https://doi.org/10.1016/j.jcp.2003.10.013, 2004.
[17] Niu X. D., Shu C., Chew Y. T., & Peng Y., A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows. Physics Letters A, 354(3), 173-182. doi: https://doi.org/10.1016/j.physleta.2006.01.060, 2006.
[18] Dupuis A., Chatelain P., & Koumoutsakos P., An immersed boundary–lattice-Boltzmann method for the simulation of the flow past an impulsively started cylinder. Journal of Computational Physics, 227(9), 4486-4498. doi: https://doi.org/10.1016/j.jcp.2008.01.009, 2008.
[19] Amiri Delouei A., Nazari M., Kayhani M. H., Kang S. K., & Succi S., Non-Newtonian particulate flow simulation: A direct-forcing immersed boundary–lattice Boltzmann approach. Physica A: Statistical Mechanics and its Applications, 447, 1-20. doi: https://doi.org/10.1016/j.physa.2015.11.032, 2016.
[20] Wu J., & Shu C., Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications. Journal of Computational Physics, 228(6), 1963-1979. doi: https://doi.org/10.1016/j.jcp.2008.11.019, 2009.
[21] Guo Z., Zheng C., & Shi B., Discrete lattice effects on the forcing term in the lattice Boltzmann method. Physical Review E, 65(4), 046308. doi: 10.1103/PhysRevE.65.046308, 2002.
[22] Ashurst W. T., & Hoover W. G., Microscopic fracture studies in the two-dimensional triangular lattice. Physical Review B, 14(4), 1465-1473. doi: 10.1103/PhysRevB.14.1465, 1976.
[23] Hrennikoff A., Solution of Problems of Elasticity by the Framework Method. J. Appl. Mech1941.
[24] Monette L., & Anderson M. P., Elastic and fracture properties of the two-dimensional triangular and square lattices. Modelling and Simulation in Materials Science and Engineering, 2(1), 53-66. doi: 10.1088/0965-0393/2/1/004, 1994.
[25] Buxton G. A., Care C. M., & Cleaver D. J., A lattice spring model of heterogeneous materials with plasticity. Modelling and Simulation in Materials Science and Engineering, 9(6), 485-497. doi: 10.1088/0965-0393/9/6/302, 2001.
[26] Hassold G. N., & Srolovitz D. J., Brittle fracture in materials with random defects. Physical Review B, 39(13), 9273-9281. doi: 10.1103/PhysRevB.39.9273, 1989.
[27] Parisi A., & Caldarelli G., Self-affine properties of fractures in brittle materials. Physica A: Statistical Mechanics and its Applications, 280(1), 161-165. doi: https://doi.org/10.1016/S0378-4371(99)00633-0, 2000.
[28] Zhao G.-F., Fang J., & Zhao J. A 3D distinct lattice spring model for elasticity and dynamic failure. International Journal for Numerical and Analytical Methods in Geomechanics, 35(8), 859-885. doi: 10.1002/nag.930, 2011.
[29] Omori T., Ishikawa T., Barthès-Biesel D., Salsac A. V., Walter J., Imai Y., & Yamaguchi T., Comparison between spring network models and continuum constitutive laws: Application to the large deformation of a capsule in shear flow. Physical Review E, 83(4), 041918. doi: 10.1103/PhysRevE.83.041918, 2011.
[30] Agresar G., Linderman J. J., Tryggvason G., & Powell K. G. An Adaptive, Cartesian, Front-Tracking Method for the Motion, Deformation and Adhesion of Circulating Cells. Journal of Computational Physics, 143(2), 346-380. doi: https://doi.org/10.1006/jcph.1998.5967, 1998.
[31] Peskin C. S. (). The immersed boundary method. Acta Numerica, 11, 479-517. doi: 10.1017/S0962492902000077, 2003.
[32] Wu J. and Shu C., Particulate flow simulation via a boundary condition-enforced immersed boundary-lattice Boltzmann scheme, Communications in Computational Physics, vol. 7, pp. 793, 2010.
[33] Yan Y., Morris J. F., & Koplik J. Hydrodynamic interaction of two particles in confined linear shear flow at finite Reynolds number. Physics of Fluids, 19(11), 113305. doi: 10.1063/1.2786478, 2007.