مدلسازی و ارائه روش جدید ارزیابی عملکرد پیل سوختی کربنات مذاب با بهسازی داخلی غیرمستقیم جهت کاربرد در صنایع هوافضا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد، گروه مهندسی سیستم‌های انرژی، دانشگاه صنعتی شریف، تهران، ایران

2 دانشیار، دانشکده مهندسی برق، دانشگاه علوم و فنون هوایی شهید ستاری، تهران، ایران

3 استادیار، دانشکده مهندسی برق، دانشگاه علوم و فنون هوایی شهید ستاری، تهران، ایران

چکیده

پیل‌های سوختی در سال‌های اخیر بسیار مورد توجه قرار گرفته‌اند. در میان انواع پیل‌های سوختی، پیل‌های سوختی دما بالا به عنوان فناوری‌های با عملکرد مناسب شناخته شده‌اند، چرا که راندمان بالایی دارند، سازگار با سوخت‌های مختلف هستند و همچنین از دمای بالای آن‌ها می‌توان برای کاربردهای تولید همزمان استفاده نمود. از میان پیل‌های سوختی دما بالا ،پیل سوختی کربنات مذاب دارای مزایای بسیاری است اما کمتر مورد توجه قرار گرفته است. استفاده به عنوان جداساز دی‌اکسیدکربن و همچنین توانایی کاربرد بهسازگر داخلی از جمله مزایای آن است. بهسازگر داخلی نیاز به تجهیزات خارجی جهت بهسازی را از بین می‌برد و همچنین منجر به افزایش راندمان کلی سیستم می‌گردد. به منظور درک بهتر عملکرد پیل سوختی کربنات مذاب، در این پژوهش مدل پیل سوختی کربنات مذاب با بهسازی داخلی غیرمستقیم، مرحله به مرحله توسعه داده شده است. مدل حاضر به گونه‌ای توسعه داده شده است که دارای سرعت پاسخگویی و دقت مناسبی باشد. همچنین به منظور ارزیابی پارامترهای مؤثر در عملکرد پیل سوختی، تأثیر پارامترهایی نظیر فشار، دمای ورودی پیل سوختی، نسبت بخار به سوخت، ضریب به‌کارگیری سوخت، هوا و دی‌اکسیدکربن بر راندمان پیل سوختی مورد بررسی قرار گرفته است. از آنجا که استفاده از این فناوری تبدیل انرژی به‌ویژه در کشور ما در مراحل تکامل است، بررسی نحوه عملکرد این فناوری در شرایط مختلف می‌تواند به بلوغ بیشتر این فناوری کمک کند و جایگاه خود را در استفاده صنایع هوافضا به­خصوص تولید انرژی الکتریکی در هواپیما اثبات نماید. با توجه به نتایج تحلیل حساسیت صورت گرفته، پارامترهای فشار، نسبت بخار به سوخت، دمای ورودی پیل سوختی و ضریب به کار گیری سوخت بیشترین تأثیر را روی راندمان پیل سوختی دارند. با افزایش فشار، راندمان از 56% به 42% افت می‌کند. همچنین افزایش نسبت بخار به سوخت، دمای ورودی پیل سوختی و ضریب به کار گیری سوخت، به ترتیب منجر به افزایش راندمان به میزان 6.2%، 7.5% و 14.3% می‌شود. از سوی دیگر پارامترهای ضریب به‌کارگیری هوا و دی‌اکسیدکربن کمترین اثر را روی راندمان پیل سوختی کربنات مذاب دارند.

کلیدواژه‌ها

موضوعات


Hengeveld D. W. and Revankar S. T., Economic analysis of a combined heat and power molten carbonate fuel cell system, Journal of Power Sources, Vol. 165, pp. 300-306, 2007.
Campanari S., Manzolini G. and Chiesa P., Using MCFC for high efficiency CO2 capture from natural gas combined cycles: Comparison of internal and external reforming, Applied Energy, Vol. 112, pp. 772-783, 2013.
Heidebrecht P.and Sundmacher S., Molten carbonate fuel cell (MCFC) with internal reforming: model-based analysis of cell dynamics, Chem. Eng. Sci., Vol. 58, pp. 1029-1036, 2003.
Lukas M. D., Lee K. Y. and Ghezel-Ayagh H., Development of a stack simulation model for control study on direct reforming molten carbonate fuel cell power plant, IEEE Transactions on Energy Conversion, Vol. 14, pp. 1651-1657, 1999.
Ohtuski J., Kusunoki A., Murahashi T., Tanaka T. and Nishiyama E., in Proc Int. Fuel Cell Conf, Makuhan, Japan, Feb 3-6, 1992, pp 251-254.
J. M. Munoz de Escalona, D. Sanchez, R. Chacartegui and T. Sanchez, A step-by-step methodology to construct a model of performance of molten carbonate fuel cells with internal reforming, International Journal of Hydrogen Energy, Vol. 36, pp. 15739-15751, 2011.
Okada T., Ide H., Miyazaki M. and Tanaka T., in Proc 25th Intersociety Energy Conversion Engineering Conf, Reno, NV, USA, Aug 12-17, 1990, Vol 3 pp 207-212.
Kordesch K. and Simader G., Fuel cells and their applications, VCH, New York, pp. 111-113, 1996.
Pfafferodt M., Heidebrecht P. and Sundmacher K., Stack modelling of a Molten Carbonate Fuel Cell (MCFC), Fuel Cells, Vol. 10, no. 4, pp. 619-635, 2010.
Milewski J., Wolowicz M., Miller A. and Bernat R., A reduced order model of molten carbonate fuel cell: A proposal, International Journal of Hydrogen Energy, Vol. 38, pp. 11565-11575, 2013.
He W. and Chen Q., Three-dimensional simulation of a molten carbonate fuel cell stack using computational fluid dynamics technique, Journal of Power Sources, Vol. 55, no. 1, pp. 25-32, 1995.
Yoshiba F., Ono N., Izaki Y., Watanabe T. and Abe T., Numerical analyses of the internal conditions of a molten carbonate fuel cell stack: comparision of stack performances for various gas flow types, Journal of Power Sources, Vol. 71, No. 1, pp. 328-336, 1998.
Wang P., Zhou L., Li G., Lin H., Shao Z., Zhang X. and Yi B., Direct internal reforming molten carbonate fuel cell with core-shell catalyst, International Journal of Hydrogen Energy, Vol. 37, pp. 2588-2595, 2012.
koh J. H., Kang B. S. and Lim H. C., Analysis of temperature and pressure fields in molten carbonate fuel cell stacks, AICHE Journal, Vol. 47, pp. 1941-1956, 2001.
Koh J. H., Kang B. S. and Lim H. C., Effect of various stack parameters on temperature rise in molten carbonate fuel cell, Journal of Power Sources, Vol. 91, No. 2, pp. 161-171, 2000.
Campanari S., Chiesa P. and Manzolini G., CO2 capture from combined cycle integrated with Molten Carbonate Fuel Cells, International Journal of Greenhouse Gas Control, Vol. 4, pp. 441-451, 2010.
Haghighat Mamaghani A., Najafi B., Shirazi A. and Rinaldi F., Exergetic, economic and environmental evaluations and multi-objective optimization of a combined molten carbonate fuel cell-gas turbine system, Applied Thermal Engineering, Vol. 77, pp. 1-11, 2015.
Iora P. and Campanari S., Development of a three dimensional molten carbonate fuel cell and application to hybrid cycle simulations, Journal of Fuel Cell Science and Technology, Vol. 4, pp. 501-510, 2007.
Leto L., Dispenza C., Moreno A. and Calabro A., Simulation model of a molten carbonate fuel cell-microturbine hybrid system, Applied Thermal Engineering, Vol. 31, pp. 1263-1271, 2011.
Hamad T. A., Agll A. A., Hamad Y. M., Bapat S., Thomas M., Martin K. B. and Sheffield J. W., Study of a molten carbonare fuel cell combined heat, hydrogen and power system, Energy, Vol. 75, pp. 579-588, 2014.
Li X., Ogden J. and Yang C., Analysis of the design and economics of molten carbonate fuel cell tri-generation systems providing heat and power for commercial buildings and H2 for FC vehicles, Journal of Power Sources, Vol. 241, pp. 668-679, 2013.
Haghighat Mamaghani A., Najafi B., Shirazi A. and Rinaldi F., 4E analysis and multi-objective optimization of an integrated MCFC (molten carbonate fuel cell) and ORC (organic Rankine cycle) system, Energy, Vol. 82, pp. 650-663, 2015.
Sugiura K. and Naruse I., Feasibility study of the co-generation system with direct internal reforming-molten carbonate fuel cell (DIR-MCFC) for residential use, Journal of Power Sources, Vol. 106, pp. 51-59, 2002.
Huang H., Li J., He Z., Zeng T., Kobayashi N. and Kubota M., Performance analysis of a MCFC/MGT hybrid power system bi-fueled by city gas and biogas, Energies, Vol. 8, pp. 5661-5677, 2015.
Liu A. and Weng Y., Modeling of molten carbonate fuel cell based on the volume-resistance characteristics and experimental analysis, Journal of Power Sources, Vol. 195, pp. 1872-1879, 2010.
Jarosch K., El Solh T. and de Lasa H., Modelling the catalytic steam reforming of methane: discrimination between kinetic expressions using sequentially designed experiments, Chemical Engineering Science, Vol. 57, pp. 3439-3451, 2002.
Appleby A., Blomen L. and Mugerwa M., in Fuel Cell Systems, New York, Plenum Press, 1993, pp. 157-197.
M. Fermeglia, A. Cudicio, G. DeSimon, G. Longo and S. Pricl, Process Simulation for Molten Carbonate Fuel Cells, Fuel Cells, Vol. 5, no. 1, 2005.
Schadel B., Duisberg M. and Deutschmann O., Steam reforming of methane, ethane, Propane, butane and natural gas over a rhodium-based catalyst., Catal Today, Vol. 142, pp. 42-51, 2009.
Duan L., He B. and Yang Y., Parameter optimization study on SOFC-MGT hybrid power system, International Journal of Energy Research, Vol. 35, pp. 721-732, 2011.
Hao H., Zhang H., Weng S. and Su M., Dynamic numerical simulation of a molten carbonate fuel cell, Journal of Power Sources, Vol. 161, pp. 849-855, 2006.
Shirazi A., Aminyavari M., Najafi B., Rinaldi F. and Razaghi M., Thermal-economic-environmental analysis and multi objective optimization of an internal-reforming solid oxide fuel cell-gas turbine hybrid system," International Journal of Hydrogen Energy, vol. 37, pp. 19111-19124, 2012.
Simon G., Parodi F., Fermeglia M. and Taccani R., Simulation of process for electrical energy production based on molten carbonate fuel cells, Journal of Power Sources, Vol. 115, pp. 210-218, 2003.