مدلسازی ترموسینتیکی تک‌ناحیه‌ای موتورهای اشتعال تراکمی بار همگن با سوخت‌پاشی مستقیم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی مکانیک، دانشگاه صنعتی نوشیروانی بابل، بابل، ایران

2 استادیار، دانشکده مهندسی مکانیک، دانشگاه صنعتی نوشیروانی بابل، بابل، ایران

3 استاد، دانشکده مهندسی مکانیک، دانشگاه صنعتی نوشیروانی بابل، بابل، ایران

چکیده

احتراق تراکمی بار همگن، یک مفهوم احتراقی مفید، از نظر بازدهی و میزان آلاینده‌های منتشره است. لیکن بازة کارکردی محدود سبب شده است که استفاده کاربردی از آن در موتورها تاکنون موفق نبوده باشد. یکی از روش‌های کاربردی نمودن آن، ترکیب با دیگر انواع احتراق است. تزریق مستقیم سوخت به محفظة احتراق راهبرد مناسبی برای نیل به این هدف می‌باشد. برای عملی نمودن این مفهوم در موتورها، بایستی مدل‌های معتبری برای پیش‌بینی عملکرد و نیز کاربردهای کنترلی توسعه یابد. مدل‌های تک‌ناحیه‌ای، مدل‌های سریع و مناسبی برای این منظور هستند. چون این احتراق با سینتیک شیمیایی کنترل می‌شود، در مدلسازی آن باید سینتیک شیمیایی احتراق لحاظ شود. بنابراین، در این مطالعه یک مدل ترموسینتیکی تک‌ناحیه‌ای توسعه داده می‌شود و با نتایج آزمون صحه‌گذاری می‌گردد. با توجه به اینکه مهمترین فرض در مدل توسعه‌یافته، تبخیر بلادرنگ سوخت مایع پاشیده‌شده به درون محفظة احتراق است، صحت این مدل منجر به تأیید فرضیه شکل‌گیری احتراق اشتعال تراکمی بار همگن در حالت پاشش زودهنگام سوخت به درون سیلندر می‌شود. همچنین نتایج حاصل از این مدل تطابق خوبی با نتایج تجربی دارند. مدل توسعه‌یافته قادر است که زمان‌بندی احتراق را با دقت 5/0 درجة زاویة لنگ و توان تولیدی موتور را با دقت 90 درصد پیش‌بینی نماید.

کلیدواژه‌ها

موضوعات


Imtenan S., Varman M., Masjuki H., Kalam M., Sajjad H., Arbab M. and Rizwanul Fattah I., Impact of low temperature combustion attaining strategies on diesel engine emissions for diesel and biodiesels: A review, Energy Conversion and Management, Vol. 80, pp. 329–356, 2014.
 
Najt P. and Foster D., Compression-Ignited Homogeneous Charge Combustion, SAE Paper, No.  830264, 1983.
 
Fathi M., Khoshbakhti Saray R., Pourfallah M., Kheyrollahi J. and Javadirad G., EGR and Intake Charge Temperature Effects on Dual-Fuel HCCI Combustion and Emissions Characteristics, SAE Paper, No.  2011-24-0050, 2011.
 
Fathi M., Khoshbakhti Saray R. and Checkel M., The influence of Exhaust Gas Recirculation (EGR) on combustion and emissions of n-heptane/natural gas fueled Homogeneous Charge Compression Ignition (HCCI) engines, Applied Energy, Vol. 88, No. 12, pp. 4719-4724, 2011.
 
Reitz R. and Duraisamy G., Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines, Progress in Energy and Combustion Science, Vol. 46, pp. 12–71, 2015.
 
Boot M., Luijten C., Rijk E., Albrecht B. and Baert R., Optimization of Operating Conditions in the Early Direct Injection Premixed Charge Compression Ignition Regime, SAE Paper, No.  2009-24-0048,2009.
 
عبدالملکی س.، بررسی تجربی احتراق و آلاینده های خروجی از یک موتور اشتعال تراکمی راهبرد احتراقی نیمه پیش آمیخته اشتعال تراکمی. پنجمین کنفرانس سوخت و احتراق ایران، تهران، ایران، 1392.
[7]
Martin G., Mueller C., Milam D., Radovanovich M. and Gehrke C., Early direct-injection, low-temperature combustion of diesel fuel in an optical engine utilizing a 15-hole, dual-row, narrow-included-angle nozzle, SAE Paper, No.  2008-01-2400, 2008.
 
Risberg P., Kalghatgi G., Ångstrom H. E. and Wåhlin F., Auto-ignition quality of diesel-like fuels in HCCI engines, SAE Paper, No.  2005-01-2127,2005.
 
Ogawa H., Kimura S., Koike M. and Enomoto Y., A study of heat rejection and combustion characteristics of a low-temperature and pre-mixed combustion concept based on measurement of instantaneous heat flux in a direct-injection diesel engine, SAE Paper, No.  2000-01-2792, 2000.
 
Kimura S., Aoki O., Ogawa H. and Muranaka S., New combustion concept for ultra clean and high efficiency small DI engines, SAE Paper, No.  1999-01-3681, 1999.
 
Henein N., Kastury A., Natti K. and Bryzik W., Advanced Low temperature combustion (ALTC): diesel engine performance, fuel economy and emissions, SAE Paper, No.  2008-01-0652, 2008.
 
Li C., Yin L., Shamun S., Tuner M., Johansson B., Solsjo R. and Bai X. S., Transition from HCCI to PPC: the Sensitivity of Combustion Phasing to the Intake Temperature and the Injection Timing with and without EGR, SAE Paper, No.  2016-01-0767,2016.
 
جعفری م.ج. و شامخی ا.ح.، دستیابی به احتراق کم دما در موتور دیزل سبک ملی با راهبردهای پاشش زود و دیرهنگام و مقایسه آنها با یکدیگر. مجله مهندسی مکانیک مدرس، د. 16، ش. 4، ص 259-270، 1395.
[14]
Kaiadi M., Johansson B., Lundgren M. and Gaynor J., "Experimental Investigation on different Injection Strategies for Ethanol Partially Premixed Combustion," SAE Paper 2013-01-0281, 2013.
 
Bakker P., De Abreu Goes J., Somers L. and Johansson B., Characterization of Low Load PPC Operation using RON70 Fuels, SAE Paper 2014-01-1304, 2014.
 
Shen M., Lonn S. and Johansson B., Transition from HCCI to PPC Combustion by Means of Start of Injection, SAE Paper 2015-01-1790, 2015.
 
Fathi M., Jahanian O. and Shahbakhti M., Modeling and controller design architecture for cycle-by-cycle combustion control of homogeneous charge compression ignition (HCCI) engines – A comprehensive review, Energy Conversion and Management, Vol. 139, pp. 1-19, 2017.
 
Wang Z., Shuai S. J., Wang J. X., Tian G. H. and An X. L., Modeling of HCCI Combustion: From 0D to 3D, SAE Paper, No.  2006-01-1364, 2006.
 
Christensen M., Johansson B., Amnéus P. and Mauss F., Supercharged Homogeneous Charge Compression Ignition, SAE Paper 980787, 1998.
 
Fiveland S. and Assanis D., A Four-Stroke Homogeneous Charge Compression Ignition Engine Simulation for Combustion and Performance Studies, SAE Paper 2000-01-0332, 2000.
 
Flowers D., Aceves S., Smith R., Torres J., Girard J. and Dibble R., "HCCI in a CFR Engine: Experiments and Detailed Kinetic Modeling," SAE Paper 2000-01-0328, 2000.
 
Nakano M., Mandokoro Y., Kubo S. and Yamazaki S., Effects of exhaust gas recirculation in homogeneous charge compression ignition engines, International Journal of Engine Research, Vol. 1, no. 3, pp. 269-279, 2000.
 
Dec J. and Sjöberg M., A Parametric Study of HCCI Combustion – the Sources of Emissions at Low Loads and the Effects of GDI Fuel Injection, SAE Paper 2003-01-0752, 2003.
 
Gnanam G., Johnson M., Sobiesiak A. and Reader G., HCCI Combustion With Internal Fuel Reforming, Varied Levels of EGR and Charge Preheat - A Computational Study, SAE Paper 2005-01-0140, 2005.
 
Zeng W., Xie M. and Jia M., Numerical investigation on the application of catalytic combustion to HCCI engines, Chemical Engineering Journal, Vol. 127, No. 1-3, pp. 81-93, 2007.
 
Jahanian O. and Jazayeri S. A., A Comprehensive Study on Natural Gas HCCI Engine Response to Different Initial Conditions Via a Thermo-Kinetic Engine Model, in Proceedings of the ASME 2009 Internal Combustion Engine Division Fall Technical Conference, Lucerne, Switzerland, 2009.
 
Jahanian O. and Jazayeri S. A., A numerical investigation on the effects of using formaldehyde as an additive on the performance of an HCCI engine fueled with natural gas, International Journal of Energy and Environmental Engineering, Vol. 2, No. 3, pp. 79-89, 2011.
 
Jahanian O. and Jazayeri S. A., A Comprehensive Numerical Study on Effects of Natural Gas Composition on the Operation of an HCCI Engine, Oil & Gas Science and Technology - Revue d'IFP Energies nouvelles, Vol. 67, no. 3, pp. 503-515, 2012.
 
Izadi Najafabadi M., Dam N., Somers B. and Johansson B., Ignition Sensitivity Study of Partially Premixed Combustion by Using Shadowgraphy and OH* Chemiluminescence Methods, SAE Paper 2016-01-0761, 2016.
 
Filipi Z., Chang J., Guralp O., Assanis D., Kuo T. W., Najt P. and Rask R., New heat transfer correlation for an HCCI engine derived from measurements of instantaneous surface heat flux, SAE Paper, No.  2004-01-2996, 2004.
 
Goodwin D. G., Moffat H. K. and Speth R. L., Cantera: An object- oriented software toolkit for chemical kinetics, thermodynamics, and transport processes (version 2.2.1.), Published in 2016; http://www.cantera.org.
 
Heywood J. B., Internal combustion engine fundamentals, New York: McGraw-Hill, 1988.
 
Woschni G., A universally applicable equation for the instantaneous heat transfer coefficient in the internal combustion engine, SAE Paper, No.  670931,1967.
 
Fathi M., Khoshbakhti Saray R. and Checkel M. D., Detailed approach for apparent heat release analysis in HCCI engines, Fuel, Vol. 89, No. 9, pp. 2323–2330, 2010.
 
Turns S. R., An Introduction to Combustion: Concepts and Applications, Second Edition, New York: McGraw-Hill, 2000.
 
Luong M., Luo Z., Lu T., Chung S. and Yoo C., "Direct numerical simulations of the ignition of lean primary reference fuel/air mixtures with temperature inhomogeneities, Combustion and Flame, Vol. 160, No. 10, p. 2038–2047, 2013.
 
Mehl M., Curran H., Pitz W. and Westbrook C., Chemical kinetic modeling of component mixtures relevant to gasoline, in European Combustion Meeting, Vienna, Austria, 2009.
 
Mehl M., Pitz W., Sjöberg M. and Dec J., Detailed kinetic modeling of low-temperature heat release for PRF fuels in an HCCI engine, SAE paper 2009-01-1806, 2009.
 
Mehl M., Pitz W., Westbrook C. and Curran H., Kinetic Modeling of Gasoline Surrogate Components and Mixtures Under Engine Conditions, Proceedings of the Combustion Institute, Vol. 33, pp. 193-200, 2011.
 
فتحی م.، جهانیان ا. و دومیری گنجی د.، تعیین تجربی رژیم احتراقی مخلوط همگن در یک موتور اشتعال تراکمی. مجله سوخت و احتراق، د. 10، ش. 2، ص 28-39، 1396.
[41]
Kodavasal J., McNenly M. J., Babajimopoulos A., Aceves S. M., Assanis D. N., Havstad M. A. and Flowers D. L., An accelerated multi-zone model for engine cycle simulation of homogeneous charge compression ignition combustion, International Journal of Engine Research, Vol. 14, No. 5, p. 416–433, 2013.
 
Komninos N., Modeling HCCI combustion: Modification of a multi-zone model and comparison to experimental results at varying boost pressure, Applied Energy, Vol. 86, No. 10, p. 2141–2151, 2009.
 
Eichmeier J., Reitz R. and Rutland C., A Zero-Dimensional Phenomenological Model for RCCI Combustion Using Reaction Kinetics, SAE Paper 2014-01-1074, 2014.
 
Kalghatgi G. and Head R., Combustion Limits and Efficiency in a Homogeneous Charge Compression Ignition Engine, International Journal of Engine Research, Vol. 7, No. 3, pp. 215-236, 2006.
 
Xu H., Wyszynski M., Megaritis A., Yap D., Wilson T., Qiao J., Richardson S., Golunski S. and Peucheret S., Research on expansion of operating windows of controlled homogeneous auto-ignition engines, International Journal of Engine Research, vol. 8, no. 1, pp. 29-40, 2007.
 
Shahbakhti M., Ghazimirsaied A. and Koch C., Modeling Ranges of Cyclic Variability for HCCI Ignition Timing Control, in ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control, 2011.
 
Bidarvatan M. and Shahbakhti M., Two-input two-output control of blended fuel HCCI engines, SAE Paper, No.  2013-01-1663, 2013.
 
Bengtsson J., Strandh P., Johansson R., Tunestål P. and Johansson B., Hybrid modeling Of Homogeneous Charge Compression Ignition (HCCI) engine dynamics - a survey, International Journal of Control, Vol. 80, No. 11, p. 1814–1847, 2007.
 
Bengtsson J., Strandh P., Johansson R., Tunestål P. and Johansson B., Closed-loop combustion control of homogeneous charge compression ignition (HCCI) engine dynamics, International Journal of Adaptive Control and Signal Processing, Vol. 18, No. 2, p. 167–179, 2004.
 
Ravi N., Roelle M., Liao H. H., Jungkunz A., Chang C. F., Park S. and Gerdes J., Model-based control of HCCI engines using exhaust recompression, IEEE Transactions on Control Systems Technology, Vol. 18, No. 6, p. 1289–1302, 2010.
 
Bidarvatan M., Thakkar V., Shahbakhti M., Bahri B. and Abdul Aziz A., Grey-box Modeling of HCCI Engines, Applied Thermal Engineering, Vol. 70, No. 1, p. 397–409, 2014.
 
Janakiraman V., Nguyen X. and Assanis D., An ELM based predictive control method for HCCI engines, Engineering Applications of Artificial Intelligence, Vol. 48, p. 106–118, 2016.
 
Olsson J., Tunestål P. and Johansson B., Closed-loop control of an HCCI engine, SAE Paper 2001-01-1031, 2001.
 
Shaver G., Gerdes J. and Roelle M., Physics-based modeling and control of residual-affected HCCI engines, Journal of Dynamic Systems, Measurement, and Control, Vol. 131, No. 2, 2009.
 
Tandra V. and Srivastava N., Optimal peak pressure and exhaust temperature tracking control for a two-zone HCCI engine model with mean burn duration, SAE Paper 2009-01-1130, 2009.
 
Shaver G., Roelle M., Caton P., Kaahaaina N., Ravi N., Hathout J., Ahmed J., Kojic A., Park S., Edwards C. and Gerdes J., A physics-based approach to the control of homogeneous charge compression ignition engines with variable valve actuation, International Journal of Engine Research, Vol. 6, pp. 361-375, 2005.