بهینه سازی چندهدفی جریان سیال و انتقال گرما در میکروکانال‌های منقطع مورد استفاده در تراشه های رایانه

نوع مقاله : مقاله پژوهشی

نویسندگان

استادیار، گروه مهندسی مکانیک، دانشگاه اراک، اراک، ایران

چکیده

در این مقاله بهینه­سازی چندهدفی انتقال گرما و جریان سیال در میکروکانال­های منقطع (تکه­تکه شده) جاذب گرما با پره­های مستطیلی مورد استفاده در تراشه­های کامپیوتری، با بهره­گیری از تکنیک­های دینامیک سیالات محاسباتی و الگوریتم ژنتیک چندهدفی انجام گرفته است. در ابتدا، جریان سیال به صورت عددی در 100 میکروکانال­ منقطع با شکل هندسی مختلف با استفاده از تکنیک­های عددی حل شده و تمامی پارامترهای عملکردی مهم اعم از میزان شار گرمایی، حداکثر دمای دیواره­ها، افزایش دمای سیال و افت فشار سیال در میکروکانال­های مذکور محاسبه می­شود. سپس، داده­های عددی محاسبه شده برای بهینه­سازی چندهدفی جریان سیال در میکروکانال­های منقطع با پره­های مستطیلی با استفاده از الگوریتم ژنتیک چندهدفی مورد استفاده قرار می­گیرند. در فرآیند بهینه­سازی چندهدفی، سه پارامتر هندسی به عنوان متغیر طراحی وجود دارند و توابع هدف متضاد نیز، حداکثر مقدار انتقال گرما و حداقل افت فشار در میکروکانال­ها می­باشند. در قسمت نتایج، نمودار پارتو که شامل اطلاعات مهم و مفید در طراحی گرمایی و سیالاتی میکروکانال­های مذکور می­باشد، ارائه شده است و به تفصیل به بحث و بررسی در مورد ابعاد مختلف آن پرداخته شده است.

کلیدواژه‌ها


[1]  Tuckerman D.B., Pease R.F.W., High-performance heat sinking for VLSI, IEEE Electron Device Lett. Vol. 2, pp. 126–129, 1981.
[2]  Wong K. C., Lee J. H., Investigation of thermal performance of microchannel heat sink with triangular ribs in the transverse microchambers, International Communications in Heat and Mass Transfer Vol. 65, pp. 103–110, 2015.
[3]  Xia G., Chai L., Zhou M., Wang H., Effects of structural parameters on fluid flow and heat transfer in a microchannel with aligned fan-shaped reentrant cavities, International Journal of Thermal Sciences, Vol. 50, pp. 411–419, 2011.
[4]  Xu J.L., Gan Y.H., Zhang D.C., Li X.H., Microscale heat transfer enhancement using thermal boundary layer redeveloping concept, International Journal of Heat and mass Transfer, Vol. 48, pp. 1662–1674, 2005.
[5]  Xu J., Song Y., Zhang W., Zhang H., Gan Y., Numerical simulations of interrupted and conventional microchannel heat sinks, International Journal of Heat and mass Transfer, Vol. 51 pp.  5906–5917, 2008.
[6]  Cheng Y.J., Numerical simulation of stacked microchannel heat sink with mixingenhanced passive structure, International Communications in Heat and Mass Transfer , Vol. 34, pp. 295–303, 2007. 
[7]  Korichi, L. Oufer, Heat transfer enhancement in oscillatory flow in channel with periodically upper and lower walls mounted obstacles, International Journal of  Heat Fluid Flow , Vol. 28, pp. 1003–1012, 2007.
[8]  Chai L., Xia G., Zhou M., Li J., Numerical simulation of fluid flow and heat transfer in a microchannel heat sink with offset fan-shaped reentrant cavities in sidewall, International Communications in Heat and Mass Transfer , Vol. 38, pp. 577–584, 2011. 
[9]  Chai L., Xia G., Zhou M., Li J., Qi J., Optimum thermal design of interrupted microchannel heat sink with rectangular ribs in the transverse microchambers, Applied Thermal Engineering, Vol. 51 pp. 880–889, 2013.
[10]              Chai L., Xia G., Wang H., Zhou M., Cui Z., Heat transfer enhancement in microchannel heat sinks with periodic expansion–constriction cross-sections, International Journal of Heat and mass Transfer , Vol. 62, pp. 741–751, 2013.
[11]              Xia G., Chai L., Wang H., Zhou M., Cui Z., Optimum thermal design of microchannel heat sink with triangular re-entrant cavities, Applied Thermal Engineering, Vol. 31, pp. 1208–1219, 2011.
[12]              Hong F., Cheng P., Three dimensional numerical analyses and optimization of offset strip-fin microchannel heat sinks, International Communications in Heat and Mass Transfer ,Vol. 36 pp. 651–656, 2009.
[13]              Foong A.J., Ramesh N., Chandratilleke T.T., Laminar convective heat transfer in a microchannel with internal longitudinal fins, International Journal of Thrmal Sciences, Vol. 48, pp. 1908–1913, 2009.
[14]              Yang S.M., Tao W.Q., Third ed., Heat Tran.High. Educ. Press, Beijing, 1998.
[15]              Karwa R., Sharma C., Karwa N., Performance evaluation criterion at equal pumping power for enhanced performance heat transfer surfaces, Journal of Solar Energy 1–9, 2013.
[16]              Amanifard N., Nariman-Zadeh N., Farahani M. H. and Khalkhali A., Modeling of multiple short-length-scale stall cells in an axial compressor using evolved GMDH neural networks, Energy Conversion and Management Vol. 49 , pp. 2588–2594, 2008. 
[17]              Nariman-Zadeh N., Darvizeh A. and Ahmad-Zadeh R., Hybrid genetic design of GMDH-type neural networks using singular value decomposition for modeling and prediction of the explosive cutting process, Journal of Engineering Manufacture, Vol. 217, pp. 779–790, 2003.
[18]              Amanifard N., Nariman-Zadeh N., Borji M., Khalkhali A. and Habibdoust A., Modeling and Pareto optimization of heat transfer and flow coefficients in micro channels using GMDH type neural networks and genetic algorithms, Energy Conversion and Management Vol. 49, pp. 311-325, 2008. 
[19]              Deb K., Agrawal S., Pratap A.and Meyarivan T., A fast and elitist multi-objective genetic algorithm: NSGA-II”. IEEE Trans Evolutionary Computation, Vol. 6, pp. 182-97, 2002.
[20]              Safikhani H., Akhavan-Behabadi M. A., Nariman-Zadeh N. and Mahmoodabadi M. J., Modeling and multi-objective optimization of square cyclones using CFD and neural networks, Chemical Engineeing Research and Design, Vol. 89, pp. 301–309, 2011.
[21]              Sanaye S. and Hajabdollahi H., Thermal-economic multi-objective optimization of plate fin heat exchanger using genetic algorithm, Applied Energy, Vol. 87, pp. 1893–1902, 2010.
[22]              Sanaye S. and Dehghandokht M., Modeling and multi-objective optimization of parallel flow condenser using evolutionary algorithm, Applied Energy , Vol. 88, pp. 1568–1577, 2011.
[23]              Safikhani H, Modeling and multi-objective Pareto optimization of new cyclone separators using CFD, ANNs and NSGA II algorithm, Advanced Powder Technology , Vol. 27, pp. 2277-2284, 2016.
[24]              Damavandi MD, Mousavi SM, Safikhani H, Pareto optimal design of swirl cooling chambers with tangential injection using CFD, GMDH-type of ANN and NSGA-II algorithm, International Journal of Thermal Sciences , Vol. 122, pp. 102-114., 2017.
[25]              Safikhani H, Eiamsa-Ard S, Multi-objective optimization of turbulent tube flows over diamond-shaped turbulators, Heat Transfer Engineering , Vol. 37, pp1579-1584, 2016.