مطالعه عددی و پارامتری کنترل جریان به طریق مکش بر روی یک سیلندر به منظور کاهش ناپایایی‌های جریان و ریزش گردابه‌ها

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار، پژوهشگاه هوافضا، وزارت علوم، تحقیقات و فناوری، تهران، ایران

چکیده

در این مقاله، توانایی کنترل جریان به وسیله مکش بر روی یک سیلندر استوانه‌ای به منظور کاهش نیروی پسا و حذف عوامل ناپایایی و ارتعاشات ناشی از آن مورد مطالعه عددی قرار گرفته است. اثر بخشی این روش کنترلی به پارامترهای مختلفی وابسته است. برخی از این پارامترها وابسته به هندسه و برخی دیگر وابسته به ویژگی جریان می‌باشند. به همین منظور پارامترهای هندسی عرض و موقعیت شکاف مکش و همچنین سرعت مکش در کار حاضر تحقیق می‌شود. به همین منظور جریان هوا اطراف یک سیلندر در شرایط دوبعدی با عدد رینولدز  و با مدل آشفتگی K -  (RNG) شبیه‌سازی شد. نتایج بدست آمده نشان می‌دهد ریزش گردابه‌ها که سبب ایجاد ارتعاشات مخرب و تحمیل ناپایداری در سیلندر می‌شود، با اعمال مکش کافی بر روی سیلندر از بین می‌رود. مکش باعث ایجاد خلاء نسبی در زیر لایه لزج و حذف نواحی کم مومنتوم به طریق انتقال مومنتوم از نواحی دورتر از دیواره می‌شود و در نتیجه از جدایش زود هنگام جریان جلوگیری می‌کند. ضریب پسای فشاری کاهش، پسای لزج افزایش و به طور کلی پسای کل، در حدود 55 درصد کاهش می‌یابد.

کلیدواژه‌ها


[1] Main J. A., and Jones N. P., Full-scale measurements of stay cable vibration. In 10th International conference on wind engineering (10ICWE), pp. 963–970, Copenhagen, Denmark, 1999.
[2] Zuo D., and Jones N. P., Interpretation of field observations of wind and rain-wind-induced stay cable vibrations. Journal of Wind Engineering and Industrial Aerodynamics, Vol. 98, No.2, pp. 73–87, 2010.
[3] Zuo D., Jones N. P., and Main J. A., Field observation of vortex- and rain-wind-induced stay-cable vibrations in a three-dimensional environment. Journal of Wind Engineering and Industrial Aerodynamics, Vol. 96, No.6-7, pp. 1124–1133, 2008.
[4] Roshko A., On the wake and drag of bluff bodies, Journal of the Aeronautical Sciences, Vol. 22, No.2, pp. 124-132, 1955.
[5] Roshko A., Experiments on the flow past a circular cylinder at very high Reynolds number. Journal of Fluid Mechanics, Vol. 10, No.3, pp. 345-356, 1961.
[6] Wu C. J., Wang L., and Wu J. Z., Suppression of the von Karman vortex street behind a circular cylinder by a traveling wave generated by a flexible surface. Journal of Fluid Mech., Vol. 574, pp. 365–391, 2007.
[7] Patnaik B. S., and Wei G. W., Controlling wake turbulence. Phys Rev Lett, Vol. 88, No.5, pp. 35–40, 2002.
[8] Grager T., Rothmayer A., and Hu H., Stall suppression of a low- Reynolds-number airfoil with a dynamic burst control plate. In 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, AIAA 2011–1180, Orlando, Florida, USA, 2011.
[9] Ma L., and Feng L., Experimental investigation on control of vortex shedding mode of a circular cylinder using synthetic jets placed at stagnation points. Science China Technological Sciences, Vol. 56, No.1, pp. 158–170, 2013.
[10] Cuia W., Zhua H., Xiaa C., and Yang Z., Comparison of steady blowing and synthetic jets for aerodynamic drag reduction of a simplified vehicle. Procedia Engineering, Vol. 126, pp. 388 –392, 2015 
[11] DeMauro E. P., Leong C. M., and Amitay M., Interaction of a synthetic jet with the flow over a low aspect ratio cylinder. Physics of Fluids, Vol. 25, No.6, 2013.
[12] FENG L., and WANG J. J., Circular cylinder vortex-synchronization control with a synthetic jet positioned at the rear stagnation point. Journal of Fluid Mechanics, Vol. 662, pp. 232-259, 2010.
[13] Glezer A., and Amitay M., Synthetic jets. Annual Review of Fluid Mechanics, Vol. 34, pp. 503–529, 2002.
[14] Feng L. H., Wang J. J., and Pan C., Proper orthogonal decomposition analysis of vortex dynamics of a circular cylinder under synthetic jet control. Physics of Fluids, Vol. 23, No.1, 014106, 2011.
[15] Qin N., Zhu Y., and Poll D. I. A., Surface suction on aerofoil aerodynamic characteristics at transonic speeds. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 212, No.5, pp. 339–351, 1998.
[16] Patil S. K. R., and Ng T. T., Control of separation using spanwise periodic porosity. AIAA J., Vol. 48, No.1, pp. 174–187, 2010.
[17] Fransson J. H. M., Konieczny P., and Alfredsson P. H., Flow around a porous cylinder subject to continuous suction or blowing. Journal of Fluids and Structures, Vol. 19, No.8, pp. 1031–1048, 2004.
[18] Lalith Kumar D., and Dineshkumar L., Control techniques in flow past a cylinder. IOP Conf. Series: Materials Science and Engineering, Vol. 377, 2018.
[19] Chen W. L., Tang S. R.; Li H., ASCE M.; and Hu H., Influence of dynamic properties and position of rivulet on rain-wind-induced vibration of stay cables. Journal of Bridge Engineering, Vol. 18, No.10, 2013.
[20] Chen W. L., Xin D. B., Xu F., Li H., Ou J. P., and Hu H., Suppression of vortex-induced vibration of a circular cylinder using suction based flow control. Journal of Fluids and Structures, Vol. 42, No.10, pp. 25–39, 2013.
[21] کاظمی لاری م.ع.، خواجه پور س.، کیانی ف.، و اکبری م.، مدل سازی و تحلیل دینامیک سیالات محاسباتی به کمک نرم افزار Ansys. تهران، نشر عابد، 1390
[22] Rahman M., Karim M., and Alim A., Numerical Investigation of Unsteady flow Past the circular cylinder using 2D finite Volume Method. Journal of Naval Architecture and Marine engineering, Vol. 4, No.1, pp. 27-42, 2007.
[23] Chen W. L., Li H., and Hu H., An experimental study on a suction flow control method to reduce the unsteadiness of the wind loads acting on a circular cylinder. Experiments in Fluids, Vol. 55, No.4, 1707, 2014.